相关习题
 0  234363  234371  234377  234381  234387  234389  234393  234399  234401  234407  234413  234417  234419  234423  234429  234431  234437  234441  234443  234447  234449  234453  234455  234457  234458  234459  234461  234462  234463  234465  234467  234471  234473  234477  234479  234483  234489  234491  234497  234501  234503  234507  234513  234519  234521  234527  234531  234533  234539  234543  234549  234557  266669 

科目: 来源: 题型:填空题

19.不等式mx2-mx+1>0对任意实数x都成立,则实数m的取值范围是0≤m<4.

查看答案和解析>>

科目: 来源: 题型:选择题

18.若Sn=1-2+3-4+…+(-1)n+1•n,则S17+S33+S50等于 (  )
A.-1B.0C.1D.2

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知函数f(x)=kax(k为常数,a>0且a≠1)的图象过点A(0,1)和点B(2,16).
(1)求函数的解析式;
(2)g(x)=b+$\frac{1}{f(x)+1}$是奇函数,求常数b的值;
(3)对任意的x1,x2∈R且x1≠x2,试比较$f(\frac{{{x_1}+{x_2}}}{2})$与$\frac{{f({x_1})+f({x_2})}}{2}$的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知集合A={x|a≤x≤a+4},B={x|x>1 或x<-6}.
(1)若A∩B=∅,求a的取值范围;
(2)若A∪B=B,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

15.设全集U={l,3,5,7,9},集合M={1,a-5},M⊆U且∁UM={3,5,7},则实数a=14.

查看答案和解析>>

科目: 来源: 题型:填空题

14.集合A={x|$\frac{1}{2}$<2x≤4},则 A∩Z={0,1,2}.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知函数f(x)=$\sqrt{{x^2}+8x+16}$+$\sqrt{{x^2}-10x+25}$.
(1)求不等式f(x)≥f(-4)的解集;
(2)设函数g(x)=k(x-5),k∈R,若f(x)>g(x)对任意x∈R都成立,求k的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知曲线C1的参数方程为:$\left\{\begin{array}{l}x=2\sqrt{2}cosθ\\ y=3sinθ\end{array}\right.$(θ为参数),将曲线C1上每一点的横坐标缩短为原来的$\frac{1}{2}$倍,纵坐标缩短为原来的$\frac{1}{3}$倍,得到曲线C,直线l的参数方程为:$\left\{\begin{array}{l}x=2+2\sqrt{3}t\\ y=1+2t\end{array}\right.$(t为参数),直线l与曲线C交于A,B两点.
(1)写出曲线C和直线l在直角坐标系下的普通方程;
(2)若P点的坐标为P(2,1),求|PA|•|PB|的值.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)经过点$(\sqrt{2},0)$,且焦距为2.
(1)求椭圆C的方程;
(2)若A为椭圆的下顶点,经过点(1,1)的直线与椭圆C交于不同两点M,N(均异于点A),证明:直线AM与AN的斜率之和为定值,并求出定值.

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图所示,四棱锥P-ABCD,底面ABCD是边长为2的菱形,∠ABC=60°,O为AC,BD的交点,且PO⊥平面ABCD,PO=$\sqrt{6}$,点M为侧棱PD上一点,且满足PD⊥平面ACM.
(1)若在棱PD上存在一点N,且BN∥平面AMC,确定点N的位置,并说明理由;
(2)求点B到平面MCD的距离.

查看答案和解析>>

同步练习册答案