相关习题
 0  234455  234463  234469  234473  234479  234481  234485  234491  234493  234499  234505  234509  234511  234515  234521  234523  234529  234533  234535  234539  234541  234545  234547  234549  234550  234551  234553  234554  234555  234557  234559  234563  234565  234569  234571  234575  234581  234583  234589  234593  234595  234599  234605  234611  234613  234619  234623  234625  234631  234635  234641  234649  266669 

科目: 来源: 题型:解答题

2.设数列{an}和{bn}的前n项和分别为Sn和Tn,已知an>0,(an+1)2=4(Sn+1),bnSn-1=(n+1)2,其中n∈N*
(1)求数列{an}的通项公式;
(2)求数列{bn}的前项和Tn
(3)且符号[x]表示不超过x的最大整数,例如[$\frac{2}{3}}$]=0,[${\frac{11}{12}}$]=0,[${\frac{21}{20}}$]=0,[2.8]=2.当n∈N*时,试求[T1]+[T2]+…+[Tn].

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知函数f(x)=(2cos2x-1)sin2x+$\frac{1}{2}$cos4x..
(Ⅰ)求f(x)的最小正周期及单调减区间;
(Ⅱ)若x∈[0,$\frac{π}{8}$],求f(x)的最大值及取最大值时的x值.

查看答案和解析>>

科目: 来源: 题型:填空题

20.若f(x)=x2-2x+3,g(x)=log2x+m,?x1,x2∈[1,4],有f(x1)≥g(x2)成立,则实数m的取值范围是(-∞,0].

查看答案和解析>>

科目: 来源: 题型:解答题

19.若函数f(x)=lg(8+2x-x2)的定义域为M,函数g(x)=$\sqrt{1-\frac{2}{x-1}}$的定义域为N,求集合M,N,M∩N.

查看答案和解析>>

科目: 来源: 题型:选择题

18.某中学高一、高二、高三三个年级共有学生3000人,采用分层抽样的方法从全体学生中抽取一个容量为60的样本,已知高一年级学生为1 200人,则该年级抽取的学生数为(  )
A.20B.30C.24D.25

查看答案和解析>>

科目: 来源: 题型:选择题

17.经过点A(-1,4),且斜率为-1的直线方程是(  )
A.x+y+3=0B.x-y+3=0C.x+y-3=0D.x+y-5=0

查看答案和解析>>

科目: 来源: 题型:解答题

16.设函数f(x)=$\overrightarrow m$•$\overrightarrow n$,其中向量$\overrightarrow m$=(2cosx,1),$\overrightarrow n$=(cosx,$\sqrt{3}$sin2x),x∈R.
(1)求f(x)的最小正周期与单调递减区间;
(2)在△ABC中,a、b、c分别是角A、B、C的对边,已知f(A)=2,b=1,△ABC的面积为$\frac{{\sqrt{3}}}{2}$,求a.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知曲线C上任意一点到点F(1,0)的距离比到直线x+2=0的距离小1,点P(4,0).
(Ⅰ)求曲线C的方程;
(Ⅱ)设Q是曲线C上的动点,求|PQ|的最小值;
(Ⅲ)过点P的直线l与曲线C交于M、N两点,若△FMN的面积为6$\sqrt{5}$,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知函数f(x)=ax2+2bx+c(x∈R,a≠0).
(Ⅰ)若a=-1,c=0,且y=f(x)在[-1,3]上的最大值为g(b),求g(b);
(Ⅱ)若a>0,函数f(x)在[-8,-2]上不单调,且它的图象与x轴相切,求$\frac{b-2a}{f(0)}$的最大值.

查看答案和解析>>

科目: 来源: 题型:填空题

13.设集合A={(x,y)|x∈R,y∈R},点(x,y)在映射f:A→B的作用下对应的点是(x-y,x+y),则B中点(3,2)对应的A中点的坐标为$(\frac{5}{2},-\frac{1}{2})$.

查看答案和解析>>

同步练习册答案