相关习题
 0  234456  234464  234470  234474  234480  234482  234486  234492  234494  234500  234506  234510  234512  234516  234522  234524  234530  234534  234536  234540  234542  234546  234548  234550  234551  234552  234554  234555  234556  234558  234560  234564  234566  234570  234572  234576  234582  234584  234590  234594  234596  234600  234606  234612  234614  234620  234624  234626  234632  234636  234642  234650  266669 

科目: 来源: 题型:选择题

12.已知定义在R上的奇函数f(x)满足f($\frac{3}{2}$-x)=f(x),f(-2)=-3,数列{an}的前n项和为Sn,且a1=-1,Sn=2an+n(n∈N*),则f(a5)+f(a6)的值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:选择题

11.下列命题中的真命题有(  )
①做9次抛掷一枚均匀硬币的试验,结果有5次出现正面,因此出现正面的概率是$\frac{5}{9}$;
②盒子中装有大小均匀的3个红球,3个黑球,2个白球,那么每种颜色的球被摸到的可能性相同;
③从-4,-3,-2,-1,0,1,2,3中任取一个数,取得的数小于0和不小于0的可能性相同;
④二进制数1101化为八进制数是15.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目: 来源: 题型:选择题

10.已知某运动员每次投篮命中的概率都为50%.现采用随机模拟的方法估计该运动员四次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定0,1,2,3,4表示命中,5,6,7,8,9表示不命中;再以每四个随机数为一组,代表四次投篮的结果.经随机模拟产生了20组随机数:
9075   9660   1918   9257    2716    9325    8121    4589   5690    6832
4315   2573   3937   9279    5563    4882    7358    1135   1587    4989
据此估计,该运动员四次投篮恰有两次命中的概率为(  )
A.0.40B.0.35C.0.30D.0.25

查看答案和解析>>

科目: 来源: 题型:解答题

9.两人轮流投掷骰子,每人每次投掷两颗,第一个使两颗骰子点数和大于6者为胜,否则由另一人投掷,先投掷人的获胜概率是$\frac{12}{17}$(写出计算过程)

查看答案和解析>>

科目: 来源: 题型:解答题

8.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到如图的散点图及一些统计量的值.
$\overline{x}$$\overline{y}$$\overline{w}$$\sum_{i=1}^{8}$(xi-$\overline{x}$)2$\sum_{i=1}^{8}$(wi-$\overline{w}$)2$\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$)
46.65636.8289.81.61469108.8
表中${w_i}=\sqrt{x_i}$,$\overrightarrow w$=$\frac{1}{8}$$\sum_{i=1}^8{w_i}$
(Ⅰ)根据散点图判断,y=a+bx与y=c+d$\sqrt{x}$哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利率z与x、y的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题:
(ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少?
(ⅱ)年宣传费x为何值时,年利率的预报值最大?
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:$\stackrel{∧}{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})}$,$\stackrel{∧}{α}$=$\overline{v}$-$\stackrel{∧}{β}$$\overline{u}$.

查看答案和解析>>

科目: 来源: 题型:解答题

7.(Ⅰ)用辗转相除法求567与405的最大公约数.
(Ⅱ)用更相减损术求2004与4509的最大公约数.

查看答案和解析>>

科目: 来源: 题型:填空题

6.甲乙两人相约在上午9:00至10:00之间东方明珠前见面.可是两人都是大忙人,只能在那里停留5分钟就要匆匆离去,则两人见面的概率是$\frac{23}{144}$.

查看答案和解析>>

科目: 来源: 题型:选择题

5.给出一个程序框如图,则输出x的值是(  )
A.45B.43C.41D.39

查看答案和解析>>

科目: 来源: 题型:选择题

4.将函数f(x)=Asin(ωx+φ)+k(A>0,ω>0,0<φ<π)的图象向右平移$\frac{2π}{3}$个单位,所得曲线的一部分如图所示,则f(x)的解析式为(  )
A.f(x)=$\frac{3}{2}$sin($\frac{12}{11}$x-$\frac{21π}{22}$)+1B.f(x)=$\frac{3}{2}$sin($\frac{12}{11}$x+$\frac{21π}{22}$)+$\frac{1}{2}$
C.f(x)=2sin($\frac{11}{12}$x+$\frac{21π}{22}$)-$\frac{1}{2}$D.f(x)=$\frac{3}{2}$sin($\frac{12}{11}$x+$\frac{5π}{22}$)+$\frac{1}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知10件产品中有3件次品,从中任取2件,取到次品的件数为随机变量,用X表示,那么X的取值为(  )
A.0,1B.0,2C.1,2D.0,1,2

查看答案和解析>>

同步练习册答案