相关习题
 0  234487  234495  234501  234505  234511  234513  234517  234523  234525  234531  234537  234541  234543  234547  234553  234555  234561  234565  234567  234571  234573  234577  234579  234581  234582  234583  234585  234586  234587  234589  234591  234595  234597  234601  234603  234607  234613  234615  234621  234625  234627  234631  234637  234643  234645  234651  234655  234657  234663  234667  234673  234681  266669 

科目: 来源: 题型:解答题

2.已知函数f(x)=$\frac{x+a}{3x-2}$,x∈[1,4],且f(1)=2.
(1)求函数的解析式并证明函数的单调性;
(2)求函数y=f(x)的最大值和最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

1.定义在(-2,2)上的函数f(x)既为减函数,又为奇函数,解关于a的不等式f(a+1)+f(2a-3)<0.

查看答案和解析>>

科目: 来源: 题型:填空题

20.已知函数f(x)=mx2-mx-1,对于任意的x∈[1,3],f(x)<-m+5恒成立,则m的取值范围是(-∞,$\frac{6}{7}$).

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知函数f(x)=$\frac{x}{1+x}$.
(1)求f(2)与f($\frac{1}{2}$),f(3)与f($\frac{1}{3}$)的值;
(2)由(1)中求得的结果,你能发现f(x)与f($\frac{1}{x}$)有什么关系?并证明你的发现.
(3)求f(1)+f(2)+f(3)+…+f(2015)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{2015}$).

查看答案和解析>>

科目: 来源: 题型:解答题

18.集合A={x|3≤x≤5},B={x|m+1≤x≤2m-1},若B⊆A,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知函数f(x)=x2-2|x|.
(1)去绝对值,把函数f(x)写成分段函数的形式,并作出其图象;
(2)求函数f(x)的单调区间;
(3)求函数f(x)的最小值.

查看答案和解析>>

科目: 来源: 题型:选择题

16.若sinα=-$\frac{2}{3}$,且α为第四象限角,则tanα的值等于(  )
A.$\frac{2\sqrt{5}}{5}$B.-$\frac{\sqrt{5}}{2}$C.$\frac{\sqrt{5}}{2}$D.-$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目: 来源: 题型:解答题

15.若数列{an}满足前n项之和Sn=2an-4(n∈N*),bn+1=an+2bn且b1=2.求:
(1){bn} 的通项公式;
(2){bn} 的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:解答题

14.函数f(x)=mx3+x2+n,g(x)=alnx.
(1)若f(x)在点(1,f(1))处的切线方程为x+y-1=0,求f(x)的表达式;
(2)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求实数a的取值范围;
(3)在(1)的条件下,设F(x)=$\left\{\begin{array}{l}f(x),x<1\\ g(x),x≥1\end{array}$,对任意给定的正实数a,曲线y=F(x)上是否存在两点P,Q,使得△POQ是以O(O为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在y轴上?请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

13.2016年1月2日凌晨某公司公布的元旦全天交易数据显示,天猫元旦当天全天的成交金额为315.5亿元.为了了解网购者一次性购物情况,某统计部门随机抽查了1月1日100名网购者的网购情况,得到如表数据统计表,已知网购金额在2000元以上(不含2000元)的频率为0.4.
网购金额(元)频数频率
(0,500]50.05
(500,1000]xp
(1000,1500]150.15
(1500,2000]250.25
(2000,2500]300.3
(2500,3000]yq
合计1001.00
(1)先求出x,y,p,q的值,再将如图3所示的频率分布直方图绘制完整;
(2)对这100名网购者进一步调查显示:购物金额在2000元以上的购物者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的购物者中网龄不足3年的有20人,请填写下面的列联表,并据此判断能否在犯错误的概率不超过0.025的前提下认为网购金额超过2000元与网龄在3年以上有关?
x网龄3年以上网龄不足3年合计
购物金额在2000元以上35
购物金额在2000元以下20
总计100
参考数据:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
(3)从这100名网购者中根据购物金额分层抽出20人给予返券奖励,为进一步激发购物热情,在(2000,2500]和(2500,3000]两组所抽出的8人中再随机抽取2人各奖励1000元现金,求(2000,2500]组获得现金将的数学期望.

查看答案和解析>>

同步练习册答案