相关习题
 0  234501  234509  234515  234519  234525  234527  234531  234537  234539  234545  234551  234555  234557  234561  234567  234569  234575  234579  234581  234585  234587  234591  234593  234595  234596  234597  234599  234600  234601  234603  234605  234609  234611  234615  234617  234621  234627  234629  234635  234639  234641  234645  234651  234657  234659  234665  234669  234671  234677  234681  234687  234695  266669 

科目: 来源: 题型:解答题

2.如图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2,N为线段PB的中点.
(Ⅰ)证明:NE⊥PD;
(Ⅱ)求三棱锥E-PBC的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

1.在△ABC中,a,b,c分别为内角A,B,C的对边,已知$tan(A-\frac{π}{6})=\frac{{\sqrt{3}}}{3}$.
(Ⅰ) 求A;
(Ⅱ)若a=$\sqrt{7}$,b=2,求△ABC的面积.

查看答案和解析>>

科目: 来源: 题型:选择题

20.已知a=21.2,b=20.8,c=2log52,则a,b,c的大小关系为(  )
A.c<b<aB.c<a<bC.b<a<cD.b<c<a

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知过点P(m,0)的直线l的参数方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t+m}\\{y=\frac{1}{2}t}\end{array}\right.$(t为参数).以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程式为ρ=2cosθ.
(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)若直线l与曲线C交于两点A,B,且|PA|•|PB|=1,求实数m的值.

查看答案和解析>>

科目: 来源: 题型:填空题

18.在正四棱锥P-ABCD中,PA=2,直线PA与平面ABCD所成角为60°,E为PC的中点,则异面直线PA与BE所成角的大小为45°.

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知定义在R上的函数y=f(x)满足:函数y=f(x-1)的图象关于直线x=1对称,且当x∈(-∞,0),f(x)+xf′(x)<0成立(f′(x)是函数f(x)的导函数),若a=(sin$\frac{1}{2}$)f(sin$\frac{1}{2}$),b=(ln2)f(ln2),c=2f(log${\;}_{\frac{1}{2}}$$\frac{1}{4}$),则a,b,c的大小关系是(  )
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

查看答案和解析>>

科目: 来源: 题型:选择题

16.若复数z满足iz=1+2i,其中i为虚数单位,则在复平面上复数z对应的点的坐标为(  )
A.(-2,-1)B.(-2,1)C.(2,1)D.(2,-1)

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知圆C:x2+y2-2x+4y-4=0与直线l:y=x+b相交于不同的两点A、B.
(1)求实数b的取值范围;
(2)是否存在直线l,使得OA⊥OB(其中O为坐标原点),若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

14.一个正方体的棱长为2,则该正方体的内切球的体积为$\frac{4π}{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

13.已知函数f(x)是定义在R上的奇函数,且x≤0时f(x)=3x-2x+m(m∈R,m为常数),则f(2)=$-\frac{28}{9}$.

查看答案和解析>>

同步练习册答案