相关习题
 0  234622  234630  234636  234640  234646  234648  234652  234658  234660  234666  234672  234676  234678  234682  234688  234690  234696  234700  234702  234706  234708  234712  234714  234716  234717  234718  234720  234721  234722  234724  234726  234730  234732  234736  234738  234742  234748  234750  234756  234760  234762  234766  234772  234778  234780  234786  234790  234792  234798  234802  234808  234816  266669 

科目: 来源: 题型:解答题

15.已知函数f(x)=ex-x+a,g(x)=$\frac{1}{{e}^{x}}$+x+a2,a∈R.
(1)求函数f(x)的单调区间;
(2)若存在x∈[0,2],使得f(x)<g(x)成立,求a的取值范围;
(3)设x1,x2是函数f(x)的两个不同零点,求证:e${\;}^{{x}_{1}+{x}_{2}}$<1.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知函数f(x)=x3+ax2-a2x-1,a>0.
(1)当a=2时,求函数f(x)的单调区间;
(2)若关于x的不等式f(x)≤0在[1,+∞)上有解,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图,在多面体ABCDEF中,四边形ABCD为矩形,△ADE,△BCF均为等边三角形,EF∥AB,EF=AD=$\frac{1}{2}$AB,N为线段PC的中点.
(1)求证:AF∥平面BDN;
(2)求直线BN与平面ABF所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

12.设A={x|x2-x-6=0},B={x|x2+3x+2=0}.
(1)用列举法表示集合A,B;
(2)求A∩B,A∪B.

查看答案和解析>>

科目: 来源: 题型:填空题

11.平面直角坐标系xoy中,单位圆与x轴交于A,B两点,P为圆上任意一点,则PA+PB的最大值为2$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知函数f(x)=lnx-$\frac{1}{2}$ax2+x,a∈R.
(Ⅰ)若x=2是函数f(x)的一个极值点,求实数a的值;
(Ⅱ)若关于x的不等式f(x)≤ax-1恒成立,求整数a的最小值;
(Ⅲ)是否存在x0>0,使得|f(x)+$\frac{1}{2}$ax2-f(x0)|<0对任意x>0成立?若存在,求出x0的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知数列{an}满足an+1=2an,且a1、a2+1、a3成等差数列.
(Ⅰ)求{an}的通项公式;
(Ⅱ)记数列{log2an}的前n项和为Sn,求使不等式Sn>45成立的最小正整数n的值.

查看答案和解析>>

科目: 来源: 题型:选择题

8.某高校《统计初步》课程的教师随机调查了选修该课的学生的一些情况,具体数据如表1:为了判断主修统计专业是否与性别有关,根据表中数据,得K2的观察值为k=$\frac{{50×{{(13×20-10×7)}^2}}}{23×27×20×30}$≈4.844,所以判断主修统计专业与性别有关,那么这种判断出错的可能性不超过(  )
表1非统计专业统计专业
1310
720
P(K2≥k00.050.0250.010.005
k03.8415.0246.6357.879
A.5%B.2.5%C.1%D.0.5%

查看答案和解析>>

科目: 来源: 题型:解答题

7.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如表所示:
X1234
Y51484542
这里,两株作物“相近”是指它们之间的直线距离不超过1米.
(1)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;
(2)从所种作物中随机选取一株,求它的年收获量Y的分布列.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=$\sqrt{3}$,$\overrightarrow{a}$•$\overrightarrow{b}$=6,求
(1)($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{b}$;
(2)求|$\overrightarrow{a}$+$\overrightarrow{b}$|.

查看答案和解析>>

同步练习册答案