相关习题
 0  234636  234644  234650  234654  234660  234662  234666  234672  234674  234680  234686  234690  234692  234696  234702  234704  234710  234714  234716  234720  234722  234726  234728  234730  234731  234732  234734  234735  234736  234738  234740  234744  234746  234750  234752  234756  234762  234764  234770  234774  234776  234780  234786  234792  234794  234800  234804  234806  234812  234816  234822  234830  266669 

科目: 来源: 题型:选择题

15.已知集合A={x|1<x≤5},B={x|log2x≥1},则A∩B=(  )
A.{x|2≤x≤5}B.{x|1<x≤2}C.{x|1<x≤3}D.{x|1<x≤5}

查看答案和解析>>

科目: 来源: 题型:解答题

14.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知$1+\frac{tanA}{tanB}=\frac{2c}{{\sqrt{3}b}}$
(1)求角A的大小;
(2)现在给出下列三个条件:①a=1;②2c-($\sqrt{3}$+1)b=0;③B=$\frac{π}{4}$,试从中选择两个条件可以确定△ABC,求所确定的△ABC的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图,菱形ABCD与正三角形BCE的边长均为2,它们所在平面互相垂直,FD⊥平面ABCD,且$FD=\sqrt{3}$.
(1)若∠BCD=60°,求证:BC⊥EF;
(2)若∠CBA=60°,求直线AF与平面FBE所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知A,B分别为椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右顶点,不同两点P,Q在椭圆C上,且关于x轴对称,设直线AP,BQ的斜率分别为m,n,则当$\frac{a}{b}-\frac{1}{3mn}$取最大值时,椭圆C的离心率为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{1}{2}$D.$\frac{{\sqrt{5}}}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

11.某校3名教师和3名学生共6人去北京参加学习方法研讨会,须乘坐两辆车,每车坐3人,则恰有两名教师在同一车上的概率(  )
A.$\frac{1}{9}$B.$\frac{2}{3}$C.$\frac{9}{20}$D.$\frac{2}{5}$

查看答案和解析>>

科目: 来源: 题型:选择题

10.若曲线y=x3的切线方程为y=kx+2,则k=(  )
A.-1B.1C.-3D.3

查看答案和解析>>

科目: 来源: 题型:选择题

9.某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如下表:
年份2007200820092010201120122013
年份代号t1234567
人均纯收入y2.93.33.64.44.85.25.9
若y关于t的线性回归方程为$\stackrel{∧}{y}$=0.5t+a,则据此该地区2017年农村居民家庭人均纯收入约为(  )
A.6.3千元B.7.5千元C.6.7千元D.7.8千元

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知函数$f(x)=xlnx+\frac{1}{2}a{x^2}-1$,且f'(1)=-1.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若对任意x∈(0,+∞),都有f(x)-2mx+1≤0,求m的取值范围;
(Ⅲ)证明函数y=f(x)+2x的图象在g(x)=xex-x2-1图象的下方.

查看答案和解析>>

科目: 来源: 题型:解答题

7.某地自来水苯超标,当地自来水公司对水质检测后,决定在水中投放一种药剂来净化水质,已知每投放质量为m的药剂后,经过x天该药剂在水中释放的浓度y(毫克/升)满足y=mf(x),其中f(x)=$\left\{\begin{array}{l}\frac{x^2}{25}+2,({0<x≤5})\\ \frac{x+19}{2x-2},({x>5})\end{array}$,当药剂在水中的浓度不低于5(毫克/升)时称为有效净化;当药剂在水中的浓度不低于5(毫克/升)且不高于10(毫克/升)时称为最佳净化.
(Ⅰ)如果投放的药剂质量为m=5,试问自来水达到有效净化一共可持续几天?
(Ⅱ)如果投放的药剂质量为m,为了使在9天(从投放药剂算起包括9天)之内的自来水达到最佳净化,试确定应该投放的药剂质量m的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

6.设各项均为正数的数列{an}的前n项和为Sn,且Sn满足:2Sn2-(3n2+3n-2)Sn-3(n2+n)=0,n∈N*
(Ⅰ)求a1的值;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)设bn=$\frac{a_n}{{{3^{n+1}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案