相关习题
 0  234654  234662  234668  234672  234678  234680  234684  234690  234692  234698  234704  234708  234710  234714  234720  234722  234728  234732  234734  234738  234740  234744  234746  234748  234749  234750  234752  234753  234754  234756  234758  234762  234764  234768  234770  234774  234780  234782  234788  234792  234794  234798  234804  234810  234812  234818  234822  234824  234830  234834  234840  234848  266669 

科目: 来源: 题型:解答题

4.已知双曲线C1:$\left\{\begin{array}{l}x=3cosα\\ y=2sinα\end{array}$(α为参数),再以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为2ρsinθ+ρcosθ=10.
(1)求曲线C1的普通方程和曲线C的直角坐标方程;
(2)若点M在曲线C1上运动,试求出M到曲线C的距离的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

3.函数f(x)=$\frac{1}{2}$x2-(a+1)x+alnx.
(1)讨论f(x)单调性;
(2)若f(x)恰有两个零点,求a的范围.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知抛物线E:y2=2px焦点为F,准线为l,P为l上任意点.过P作E的一条切线,切点分别为Q.
(1)若过F垂直于x轴的直线交抛物线所得的弦长为4,求抛物线的方程;
(2)求证:以PQ为直径的圆恒过定点.

查看答案和解析>>

科目: 来源: 题型:解答题

1.四棱锥P-ABCD中,PC=AB=1,BC=2,∠ABC=60°,底面ABCD为平行四边形,PC⊥平面ABCD,点M,N分别为AD,PC的中点.
(1)求证:MN∥平面PAB;
(2)求三棱锥B-PMN的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

20.函数f(x)=$\frac{1}{{{2^x}-1}}$+a关于(0,0)对称.
(1)求a得值;
(2)解不等式f(x)<$\frac{2}{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

19.已知f(x)是定义在实数集上的函数,当x∈(0,1]时,f(x)=2x,且对任意x都有f(x+1)=$\frac{1-2f(x)}{2-f(x)}$,则f(log25)=$\frac{4}{5}$.

查看答案和解析>>

科目: 来源: 题型:填空题

18.log26-log23-3${\;}^{{{log}_3}\frac{1}{2}}}$+(${\frac{1}{4}}$)${\;}^{-\frac{1}{2}}}$=$\frac{5}{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知函数f(x)=$\left\{\begin{array}{l}{x^2},x≤a\\ 2x+3,x>a\end{array}$,若方程f(x)+2x-8=0恰有两个不同实根,则实数a的取值范围是(  )
A.$[-4,\frac{5}{4}]∪[2,+∞)$B.[-4,2]C.$(\frac{5}{4},2]$D.$[{-4,\frac{5}{4}}]$

查看答案和解析>>

科目: 来源: 题型:解答题

16.某班早晨7:30开始上早读课,该班学生小陈和小李在早上7:10至7:30之间到班,且两人在此时间段的任何时刻到班是等可能的.
(1)在平面直角坐标系中画出两人到班的所有可能结果表示的区域;
(2)求小陈比小李至少晚5分钟到班的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

15.小李参加一种红包接龙游戏:他在红包里塞了12元,然后发给朋友A,如果A猜中,A将获得红包里的所有金额;如果A未猜中,A将当前的红包转发给朋友B,如果B猜中,A、B平分红包里的金额;如果B未猜中,B将当前的红包转发给朋友C,如果C猜中,A、B和C平分红包里的金额;如果C未猜中,红包里的钱将退回小李的账户,设A、B、C猜中的概率分别为$\frac{1}{3}$,$\frac{1}{2}$,$\frac{1}{3}$,且A、B、C是否猜中互不影响.
(1)求A恰好获得4元的概率;
(2)设A获得的金额为X元,求X的分布列;
(3)设B获得的金额为Y元,C获得的金额为Z元,判断A所获得的金额的期望能否超过Y的期望与Z的期望之和.

查看答案和解析>>

同步练习册答案