相关习题
 0  234668  234676  234682  234686  234692  234694  234698  234704  234706  234712  234718  234722  234724  234728  234734  234736  234742  234746  234748  234752  234754  234758  234760  234762  234763  234764  234766  234767  234768  234770  234772  234776  234778  234782  234784  234788  234794  234796  234802  234806  234808  234812  234818  234824  234826  234832  234836  234838  234844  234848  234854  234862  266669 

科目: 来源: 题型:选择题

4.《张丘建算经》中女子织布问题为:某女子善于织布,一天比一天织得快,且从第2天开始,每天比前一天多织相同量的布,已知第一天织5尺布,一月(按30天计)共织390尺布,则从第2天起每天比前一天多织(  )尺布.
A.$\frac{1}{2}$B.$\frac{8}{15}$C.$\frac{16}{31}$D.$\frac{16}{29}$

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知函数f(x)=6cos2x-$\sqrt{3}$sin2x.
(1)求f(x)的最小正周期和最大值;
(2)求锐角α满足f(α)=3-2$\sqrt{3}$,求tan$\frac{4}{5}$α.

查看答案和解析>>

科目: 来源: 题型:选择题

2.对于函数f(x)与g(x),若区间[a,b]上|f(x)-g(x)|的最大值称为f(x)与g(x)的“绝对差”,则f(x)=$\frac{1}{x+1}$,g(x)=$\frac{2}{9}$x2-x在[1,4]上的“绝对差”为(  )
A.$\frac{271}{72}$B.$\frac{23}{18}$C.$\frac{29}{45}$D.$\frac{13}{9}$

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知函数f(x)=|x+1|.
(1)求不等式f(x)+1<f(2x)的解集M;
(2)设a,b∈M,证明:f(ab)>f(a)-f(-b).

查看答案和解析>>

科目: 来源: 题型:解答题

20.在极坐标系中,已知曲线C:ρ=2cosθ,将曲线C上的点向左平移一个单位,然后纵坐标不变,横坐标伸长到原来的2倍,得到曲线C1,又已知直线l:$\left\{\begin{array}{l}x=tcos\frac{π}{3}\\ y=\sqrt{3}+tsin\frac{π}{3}\end{array}$(t是参数),且直线l与曲线C1交于A,B两点.
(1)求曲线C1的直角坐标方程,并说明它是什么曲线;
(2)设定点P(0,$\sqrt{3}$),求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$.

查看答案和解析>>

科目: 来源: 题型:解答题

19.如图,圆O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交圆O于点N,过点N的切线交CA的延长线于点P,连接BC,CN.
(1)求证:∠BCN=∠PMN;
(2)若∠BCN=60°,PM=1,求OM的长.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知f(x)=x2-ax+lnx,a∈R.
(1)若a=0,求函数y=f(x)在点(1,f(1))处的切线方程;
(2)若函数f(x)在[$\frac{1}{2}$,1]上是增函数,求实数a的取值范围;
(3)令g(x)=x2-f(x),x∈(0,e](e是自然对数的底数);求当实数a等于多少时,可以使函数g(x)取得最小值为3.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知O为坐标原点,抛物线C:y2=nx(n>0)在第一象限内的点P(2,t)到焦点的距离为$\frac{5}{2}$,C在点P处的切线交x轴于点Q,直线l1经过点Q且垂直于x轴.
(1)求线段OQ的长;
(2)设不经过点P和Q的动直线l2:x=my+b交C交点A和B,交l1于点E,若直线PA,PB的斜率依次成等差数列,试问:l2是否过定点?请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图,已知四棱锥P-ABCD中,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=
60°,E,F分别是BC,PC的中点.
(1)证明:AE⊥平面PAD;
(2)取AB=2,在线段PD上是否存在点H,使得EH与平面PAD所成最大角的正切值为$\frac{{\sqrt{6}}}{2}$,若存在,请求出H点的位置,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

15.2016年1月2日凌晨某公司公布的元旦全天交易数据显示,天猫元旦当天全天的成交金额为315.5亿元.为了了解网购者一次性购物情况,某统计部门随机抽查了1月1日100名网购者的网购情况,得到如表数据统计表,已知网购金额在2000元以上(不含2000元)的频率为0.4.
网购金额(元)频数频率
(0,500]50.05
(500,1000]xp
(1000,1500]150.15
(1500,2000]250.25
(2000,2500]300.3
(2500,3000]yq
合计1001.00
(1)先求出x,y,p,q的值,再将如图所示的频率分布直方图绘制完整;
(2)对这100名网购者进一步调查显示:购物金额在2000元以上的购物者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的购物者中网龄不足3年的有20人,请填写下面的列联表,并据此判断能否在犯错误的概率不超过0.025的前提下认为网购金额超过2000元与网龄在3年以上有关?
x网龄3年以上网龄不足3年合计
购物金额在2000元以上35
购物金额在2000元以下20
总计100
参考数据:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

同步练习册答案