相关习题
 0  234689  234697  234703  234707  234713  234715  234719  234725  234727  234733  234739  234743  234745  234749  234755  234757  234763  234767  234769  234773  234775  234779  234781  234783  234784  234785  234787  234788  234789  234791  234793  234797  234799  234803  234805  234809  234815  234817  234823  234827  234829  234833  234839  234845  234847  234853  234857  234859  234865  234869  234875  234883  266669 

科目: 来源: 题型:填空题

10.已知等比数列{an}的前n项和为Sn,若S2n=4(a1+a3+…+a2n-1),a1•a2•a3=27,则a5=81.

查看答案和解析>>

科目: 来源: 题型:解答题

9.将1到n的n个正整数按下面的方法排成一个排列,要求:除左边的第一个数外,每个数都与它左边(未必相邻)的某个数相差1,将此种排列称为“n排列”.比如“2排列”为n=2时,有1,2;和2,1;共2种排列.“3排列”为当n=3时,有1,2,3;2,1,3;2,3,1;3,2,1;共4种排列.
(1)请写出“4排列”的排列数;
(2)问所有“n排列”的结尾数只能是什么数?请加以证明;
(3)证明:“n排列”共有2n-1个.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知矩阵A=$[\begin{array}{l}{1}&{b}\\{-1}&{a}\end{array}]$(a,b∈R),若点P(1,1)在矩阵A对应的变换作用下得到点P′(-1,1).
(1)求实数a,b的值;
(2)求矩阵A的特征值.

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图,四棱锥P-ABCD的底面ABCD是正方形,PD⊥底面ABCD,PD=AB,
(1)若E为PA的中点,求异面直线AC与BE所成角的余弦值;
(2)若点F在侧棱PC上,二面角F-BD-C的余弦值为$\frac{\sqrt{3}}{3}$,求$\frac{PF}{PC}$的值.

查看答案和解析>>

科目: 来源: 题型:填空题

6.设随机变量X的概率分布表如下:
X1234
P$\frac{1}{4}$a$\frac{3}{8}$b
若E(X)=2.5,则a-b的值为0.

查看答案和解析>>

科目: 来源: 题型:选择题

5.周期函数f(x)的定义域为R,周期为2,且当-1<x≤1时,f(x)=1-x2.若直线y=-x+a与曲线y=f(x)恰有3个交点,则实数a的取值范围是(  )
A.2k+$\frac{3}{4}$<a<2k+$\frac{5}{4}$,k∈ZB.2k+1<a<2k+3,k∈Z
C.2k+1<a<2k+$\frac{5}{4}$,k∈ZD.2k-$\frac{3}{4}$<a<2k+1,k∈Z

查看答案和解析>>

科目: 来源: 题型:选择题

4.一袋中装有分别标记着1,2,3数字的3个小球,每次从袋中取出一个球(每只小球被取到的可能性相同),现连续取2次球,若每次取出一个球后放回袋中,记2次取出的球中标号最小的数字与最大的数字分别为X,Y,设ξ=Y-X,则Eξ=(  )
A.$\frac{4}{9}$B.$\frac{2}{3}$C.$\frac{8}{9}$D.1

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知函数f(x)=$\frac{1}{2}{x^2}$-2lnx+a(a∈R),g(x)=-x2+3x-4.
(1)求f(x)的单调区间;
(2)设a=0,直线x=t与f(x),g(x)的图象分别交于点M、N,当|MN|达到最小值时,求t的值;
(3)若对于任意x∈(m,n)(其中n-m≥1),两个函数图象分别位于直线l:x-y+s=0的两侧(与直线l无公共点),则称这两个函数存在“EN通道”.试探究:f(x)与g(x)是否存在“EN通道”,若存在,求出x的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD中点.

(1)证明:CD⊥平面PAE;
(2)若直线PB与平面ABCD所成角为45°,求二面角A-PD-C的余弦值.

查看答案和解析>>

科目: 来源: 题型:选择题

1.从区间[-2,9]中任取一个实数a,则恰使得函数f(x)=ln(ax2-2x+a)存在最大值或最小值的概率为(  )
A.$\frac{1}{11}$B.$\frac{8}{11}$C.$\frac{9}{11}$D.$\frac{10}{11}$

查看答案和解析>>

同步练习册答案