相关习题
 0  234691  234699  234705  234709  234715  234717  234721  234727  234729  234735  234741  234745  234747  234751  234757  234759  234765  234769  234771  234775  234777  234781  234783  234785  234786  234787  234789  234790  234791  234793  234795  234799  234801  234805  234807  234811  234817  234819  234825  234829  234831  234835  234841  234847  234849  234855  234859  234861  234867  234871  234877  234885  266669 

科目: 来源: 题型:解答题

10.在数列{an}中,a1=1,且an+1=$\frac{{2{a_n}}}{{{a_n}+2}}$(n∈N*).
(Ⅰ)求a2,a3,a4的值;
(Ⅱ)猜想数列{an}的通项公式的表达式,并用数学归纳法证明你的猜想.

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知盒子中有4个红球,n个白球,若从中一次取出4个球,其中白球的个数为X,且E(X)=$\frac{12}{7}$.则n的值(  )
A.3B.4C.5D.6

查看答案和解析>>

科目: 来源: 题型:选择题

8.用数学归纳法证明“2n>n2,对于n≥n0的正整数n均成立”时,第一步证明中的起始值n0的最小值为(  )
A.1B.3C.5D.7

查看答案和解析>>

科目: 来源: 题型:选择题

7.如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且EF=$\frac{1}{2}$.则下列结论中正确的个数为(  )
①AC⊥BE;
②EF∥平面ABCD;
③三棱锥A-BEF的体积为定值;
④△AEF的面积与△BEF的面积相等.
A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:选择题

6.在四面体ABCD中,AB⊥AD,AB=AD=BC=CD=1,且平面ABD⊥平面BCD,M为AB中点,则CM与平面ABD所成角的正弦值为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

5.四棱锥S-ABCD中SA⊥底面ABCD,ABCD是正方形,且SA=AB,若点E是SA的中点.
(1)求证:SC∥平面EBD;
(2)求二面角S-CD-B的大小.

查看答案和解析>>

科目: 来源: 题型:选择题

4.一个半径为$\sqrt{6}$的球的内接正四棱柱的高为4,则该正四棱柱的表面积为(  )
A.24B.32C.36D.40

查看答案和解析>>

科目: 来源: 题型:解答题

3.盒中装有7个零件,其中5个是没有使用过的,2个是使用过的.
(Ⅰ)从盒中每次随机抽取1个零件,有放回的抽取3次,求3次抽取中恰有2次抽到使用过零件的概率;
(Ⅱ)从盒中任意抽取3个零件,使用后放回盒子中,设X为盒子中使用过零件的个数,求X的分布列和期望.

查看答案和解析>>

科目: 来源: 题型:填空题

2.某超市有奖促销,抽奖规则是:每消费满50元,即可抽奖一次.抽奖方法是:在不透明的盒内装有标着1,2,3,4,5号码的5个小球,从中任取1球,若号码大于3就奖励10元,否则无奖,之后将球放回盒中,即完成一次抽奖,则某人抽奖2次恰中20元的概率为$\frac{4}{25}$;若某人消费200元,则他中奖金额的期望是16元.

查看答案和解析>>

科目: 来源: 题型:选择题

1.若函数f(x)=2sin($\frac{π}{3}+\frac{π}{6}$)(-$\frac{1}{2}<x<\frac{11}{2}$)的图象与x轴交于点A,过A的直线l与函数f(x)的图象交于B,C两点,则($\overrightarrow{OB}+\overrightarrow{OC}$)$•\overrightarrow{OA}$=(  )
A.25B.-$\frac{25}{2}$C.$\frac{25}{2}$D.-25

查看答案和解析>>

同步练习册答案