相关习题
 0  234693  234701  234707  234711  234717  234719  234723  234729  234731  234737  234743  234747  234749  234753  234759  234761  234767  234771  234773  234777  234779  234783  234785  234787  234788  234789  234791  234792  234793  234795  234797  234801  234803  234807  234809  234813  234819  234821  234827  234831  234833  234837  234843  234849  234851  234857  234861  234863  234869  234873  234879  234887  266669 

科目: 来源: 题型:选择题

10.对于不等式$\sqrt{{n}^{2}+1}$<n+1(n∈N*),某学生用数学归纳法证明如下:
(1)当n=1时,$\sqrt{{1}^{2}+1}$<1+1,不等式成立;
(2)假设当n=k(k∈N*)时不等式成立,即$\sqrt{{k}^{2}+1}$<k+1,则当n=k+1时,$\sqrt{(k+1)^{2}+1}$=$\sqrt{{k}^{2}+2k+2}$$<\sqrt{{k}^{2}+2k+2+2k+2}$=$\sqrt{(k+2)^{2}}$=(k+1)+1;所以当n=k+1时,不等式$\sqrt{{n}^{2}+1}$<n+1成立.
上述证明中(  )
A.n=1验证不正确B.归纳假设不正确
C.从n=k到n=k+1的推理不正确D.证明过程完全正确

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知函数g(x)=a-x2($\frac{1}{e}$≤x≤e,e为自然对数的底数),若函数y=g(x)的图象与函数h(x)=2lnx-2的图象存在关于x轴对称的点,则实数a的最大值为(  )
A.1B.2C.e2D.2e2

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知函数f(x)=x2+mx+n,且y=f(x+2)的图象关于y轴对称,则大小关系正确的是(  )
A.f($\frac{5}{2}$)<f(1)<f($\frac{7}{2}$)B.f(1)<f($\frac{7}{2}$)<f($\frac{5}{2}$)C.f($\frac{7}{2}$)<f(1)<f($\frac{5}{2}$)D.f($\frac{7}{2}$)<f($\frac{5}{2}$)<f(1)

查看答案和解析>>

科目: 来源: 题型:解答题

7.某校为了了解学生的成绩是否与玩网游有关系,随机抽查了110名学生,得到如下2×2列联表:
  优秀非优秀 
 喜欢 10 50
 不喜欢 20 30
参考公式临界值表:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828
(1)根据列联表的数据,问:有多大把握认为“成绩优秀与玩网友有关?”
(2)现采用分层抽样方法,从不喜欢的样本中抽取5人,再从5人中随机抽取2人,求至少有一人成绩优秀的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知向量$\overrightarrow{a}$=($\sqrt{3}$cosx,cosx),$\overrightarrow{b}$=(0,sinx),$\overrightarrow{c}$=(sinx,cosx),$\overrightarrow{d}$=(sinx,sinx).
(1)当x=$\frac{π}{4}$时,求向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ;
(2)求$\overrightarrow{c}•\overrightarrow{d}$取得最大值时x的值;
(3)设函数f(x)=($\overrightarrow{a}-\overrightarrow{b}$)$•(\overrightarrow{c}+\overrightarrow{d})$,将函数f(x)的图象向右平移s个单位长度,向上平移t个长度单位(s,t>0)后得到函数g(x)的图象,且g(x)=2sin2x+1;令$\overrightarrow{m}$=(s,t),求|$\overrightarrow{m}$|的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知定义在R上的函数f(x)=asinωx+bcosωx(ω>0)的周期为π,且对一切x∈R,都有f(x)≤f($\frac{π}{12}$)=8.
(1)求函数f(x)的表达式;
(2)若g(x)=f($\frac{π}{6}$-x),求函数g(x)的单调减区间.

查看答案和解析>>

科目: 来源: 题型:解答题

4.函数f(x)=Asin(ωx-$\frac{π}{3}$)+2(A>0,ω>0)的最大值为4,其图象相邻两条对称轴之间的距离为$\frac{π}{2}$.
(1)求函数f(x)的解析式;
(2)设α∈(0,π),则f($\frac{α}{2}$)=3,求α的值.

查看答案和解析>>

科目: 来源: 题型:解答题

3.学校要了解学生对预防流行性感冒知识的了解情况,印制了若干份有10道题的问卷(每题1分)到各班做问卷调查.高一A、B两个班各被随机抽取5名学生进行问卷调查,A班5名学生得分(单位:分)为:4,8,9,9,10;B班5名学生得分(单位:分)为:6,7,8,9,10.
(1)请你估计A、B两个班中哪个班的问卷得分要稳定一些;
(Ⅱ)如果把B班5名学生的得分看成一个总体,并用简单随机抽样方法从中抽取样本容量为2的样本,求样本平均数与总体平均数之差的绝对值小于1的概率.

查看答案和解析>>

科目: 来源: 题型:选择题

2.设△ABC的三个内角为A,B,C,向量$\overrightarrow{m}$=($\sqrt{3}$sinA,sinB),$\overrightarrow{n}$=(cosB,$\sqrt{3}$cosA),若$\overrightarrow{m}$•$\overrightarrow{n}$=1-cos(A+B),则C等于(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知角α的正弦线和余弦线长度相等,且α的终边在第三象限,则tanα等于(  )
A.0B.1C.-1D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案