相关习题
 0  234701  234709  234715  234719  234725  234727  234731  234737  234739  234745  234751  234755  234757  234761  234767  234769  234775  234779  234781  234785  234787  234791  234793  234795  234796  234797  234799  234800  234801  234803  234805  234809  234811  234815  234817  234821  234827  234829  234835  234839  234841  234845  234851  234857  234859  234865  234869  234871  234877  234881  234887  234895  266669 

科目: 来源: 题型:解答题

10.已知抛物线C:y2=2px(p>0)过点M(m,2),其焦点为F,且|MF|=2.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设E为y轴上异于原点的任意一点,过点E作不经过原点的两条直线分别与抛物线C和圆F:(x-1)2+y2=1相切,切点分别为A,B,求证:直线AB过定点F(1,0).

查看答案和解析>>

科目: 来源: 题型:选择题

9.如图,在平行四边形ABCD中,$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AD}=\overrightarrow b,\overrightarrow{AN}=3\overrightarrow{NC}$,则$\overrightarrow{BN}$=(  )
A.$\frac{3}{4}\overrightarrow b+\frac{1}{4}\overrightarrow a$B.$\frac{1}{4}\overrightarrow b+\frac{3}{4}\overrightarrow a$C.$\frac{3}{4}\overrightarrow b-\frac{1}{4}\overrightarrow a$D.$\frac{1}{4}\overrightarrow b-\frac{3}{4}\overrightarrow a$

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知椭圆C的中心在原点,离心率为$\frac{1}{2}$,且与抛物线y2=4x有共同的焦点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设直线l:y=kx+m与椭圆C相切于N点,且与直线x=4交于M点,试探究,在坐标平面内是否存在点P,使得以MN为直径的圆恒过点P?

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知点F(0,1)为抛物线x2=2py的焦点.
(1)求抛物线C的方程;
(2)点A、B、C是抛物线上三点且$\overrightarrow{FA}$+$\overrightarrow{FB}$+$\overrightarrow{FC}$=$\overrightarrow{0}$,求△ABF面积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知在长方体ABCD-A1B1C1D1中,E、M、N分别是BC、AE、D1C的中点,AD=AA1,AB=2AD
(Ⅰ)证明:MN∥平面ADD1A1
(Ⅱ)求直线AD与平面DMN所成角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知抛物线y2=2px(p>0)过点(4,4),它的焦点F,倾斜角为$\frac{π}{3}$的直线l过点F且与抛物线两交点为A,B,点A在第一象限内.
(1)求抛物线和直线l的方程;
(2)求|AF|:|BF|的值.

查看答案和解析>>

科目: 来源: 题型:填空题

4.记${\left.{\overline{{a_n}{a_{n-1}}{a_{n-2}}…{a_1}{a_0}}}\right|_m}$=a0+a1×m+…+an-1×mn-1+an×mn,其中n≤m,m、n均为正整数,ak∈{0,1,2,…,m-1}(k=0,1,2,…,n)且an≠0;
(1)计算${\left.{\overline{2016}}\right|_7}$=699;
(2)设集合A(m,n)=$\left\{{{{\left.{\left.x\right|x=\overline{{a_n}{a_{n-1}}{a_{n-2}}…{a_1}{a_0}}}\right|}_m}}\right\}$,则A(m,n)中所有元素之和为$\frac{{({{m^{n+1}}+{m^n}-1})({{m^{n+1}}-{m^n}})}}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知函数f(x)=2ln(x+1)+$\frac{1}{x(x+1)}-1$;
(Ⅰ)求f(x)在区间[1,+∞)上的最小值;
(Ⅱ)证明:当n≥2时,对任意的正整数n,都有ln1+ln2+…+lnn$>\frac{(n-1)^{2}}{2n}$.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知函数f(x)=ax-2$\sqrt{4-{a}^{x}}$-1(a>1).
(1)若a=2,求函数f(x)的定义域、值域;
(2)若函数f(x)满足:对于任意x∈(-∞,1],都有f(x)+1≤0.试求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

1.设等差数列{an}的前n项和为Sn,满足a2=4,S5=30.
(1)求数列{an}的通项公式an
(2)令bn=an2n-1,求数列{an}的前n项和Tn

查看答案和解析>>

同步练习册答案