相关习题
 0  234734  234742  234748  234752  234758  234760  234764  234770  234772  234778  234784  234788  234790  234794  234800  234802  234808  234812  234814  234818  234820  234824  234826  234828  234829  234830  234832  234833  234834  234836  234838  234842  234844  234848  234850  234854  234860  234862  234868  234872  234874  234878  234884  234890  234892  234898  234902  234904  234910  234914  234920  234928  266669 

科目: 来源: 题型:填空题

9.已知线段AB上有9个确定的点(包括端点A与B).现对这些点进行往返标数(从A→B→A→B→…进行标数,遇到同方向点不够数时就“调头”往回数).如图:在点A上标1称为点1,然后从点1开始数到第二个数,标上2,称为点2,再从点2开始数到第三个数,标上3,称为点3(标上数n的点称为点n),…,这样一直继续下去,直到1,2,3,…,2013都被标记到点上.则点2013上的所有标记的数中,最小的是2.

查看答案和解析>>

科目: 来源: 题型:解答题

8.某权威机构发布了2014年度“城市居民幸福排行榜”,某市成为本年度城市最“幸福城”.随后,该市某校学生会组织部分同学,用“10分制”随机调查“阳光”社区人们的幸福度.现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):
(1)指出这组数据的众数和中位数;
(2)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;
(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示抽到“极幸福”的人数,求ξ的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:填空题

7.同时掷六个面分别标有数字1、2、3、4、5、6的质地均匀和大小相同的两枚正方形骰子,计算向上的点数之和是5的概率是$\frac{1}{9}$.

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知$f(x)=sin[\frac{π}{3}(x+1)]-\sqrt{3}cos[\frac{π}{3}(x+1)]$,则f(1)+f(2)+f(3)+…+f(2013)=(  )
A.-$\sqrt{3}$B.$\sqrt{3}$C.-2$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

5.有四个游戏盘,如图所示,(其中A的外形为正方形;B的外形为正六边形;C的外形为正方形;D.的外形为圆,D.的阴影部分为等腰直角三角形)撒一粒黄豆到游戏盘,如果落在阴影部分,则可中奖.你希望中奖机会大,你应当选择的游戏盘为(  )
A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知函数f(x)=x2+aln(x+1),其中a≠0
(1)若a=-4,求f(x)的极值;
(2)判断函数f(x)的单调性.

查看答案和解析>>

科目: 来源: 题型:解答题

3.四棱锥P-ABCD的底面是矩形,PA⊥平面ABCD,且PA=AD=2AB,点M,N分别在侧棱PD,PC上,且$\overrightarrow{PM}=\overrightarrow{MD}$.
(1)求证:平面AMN⊥平面PCD;
(2)若$\overrightarrow{PN}=2\overrightarrow{NC}$,求平面AMN与平面PAB所成锐角的二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

2.在一次物理与化学两门功课的联考中,备有6到物理题,4道化学题,共10道题可供选择.要求学生从中任意选取5道作答,答对4道或5道即为良好成绩,每道题答对与否相互没有影响,设随机变量ξ为所选5道题中化学题的题数.
(1)求ξ的分布列及其均值;
(2)若学生甲随机选定了5道题,且答对任意一题的概率均为0.6,求甲没有取得良好成绩的概率.

查看答案和解析>>

科目: 来源: 题型:选择题

1.若f(x)是定义在R上的连续函数,且$\lim_{x→1}\frac{f(x)}{x-1}$=2,则f(1)=(  )
A.2B.1C.0D.-1

查看答案和解析>>

科目: 来源: 题型:解答题

20.某食品厂为了检查甲、乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取40件产品作为样本.经统计,得到关于产品重量的样本频率分布直方图和样本频数分布表:
乙流水线
产品重量(单位:克)
频数
(490,495]6
(495,500]8
(500,505]14
(505,510]8
(510,515]4
已知产品的重量合格标准为:重量值落在(495,510]内的产品为合格品;否则为不合格品.
(1)从甲流水线样本的合格品中任意取2件,求重量值落在(505,510]的产品件数X的分布列;
(2)从乙流水线中任取2件产品,试根据样本估计总体的思想,求其中合格品的件数Y的数学期望;
(3)从甲、乙流水线中各取2件产品,用ξ表示“甲流水线合格品数与乙流水线合格品数的差的绝对值”,并用A表示事件“关于x的一元二次方程2x2+2ξx+ξ=0没有实数解”. 试根据样本估计总体的思想,求事件A的概率.

查看答案和解析>>

同步练习册答案