相关习题
 0  234740  234748  234754  234758  234764  234766  234770  234776  234778  234784  234790  234794  234796  234800  234806  234808  234814  234818  234820  234824  234826  234830  234832  234834  234835  234836  234838  234839  234840  234842  234844  234848  234850  234854  234856  234860  234866  234868  234874  234878  234880  234884  234890  234896  234898  234904  234908  234910  234916  234920  234926  234934  266669 

科目: 来源: 题型:解答题

9.已知函数$f(x)=\frac{mx}{{{x^2}+n}}(m,n∈R)$在x=1处取得极值2.
(1)求f(x)的解析式;
(2)当x>0时,求f(x)的最大值?
(3)设函数g(x)=x2-2ax+a,若对于任意x1∈R,总存在x2∈[-1,0],使得g(x2)≤f(x1),求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知函数f(x)=lnx-a(x-1),其中a>0.
(Ⅰ)若函数f(x)在(0,+∞)上有极大值0,求a的值;(提示:当且仅当x=1时,lnx=x-1);
(Ⅱ)令F(x)=f(x)+a(x-1)+$\frac{a}{x}$(0<x≤3),其图象上任意一点P(x0,y0)处切线的斜率k≤$\frac{1}{2}$恒成立,求实数a的取值范围;
(Ⅲ)讨论并求出函数f(x)在区间$[\frac{1}{e},e]$上的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

7.在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.
(1)在线段AD上是否存在点M,使GM∥平面ACF?并说明理由;
(2)若AC=BC=2AE,求二面角E-DG-C的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知函数f(x)=ax3+3xlnx-1(a∈R).
(Ⅰ)当a=0时,求f(x)的极值;
(Ⅱ)若f(x)在区间$(\frac{1}{e},e)$(其中e=2.71 828…)上有且只有一个极值点,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

5.如图,将菱形ABCD沿对角线BD折起,使得C点至C′,E点 在线段AC′上,若二面角A-BD-E与二面角E-BD-C′的大小分别为和45°和30°,则$\frac{AE}{EC′}$=(  )
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图,斜三棱柱ABC-A1B1C1的所有棱长均为a,M是BC的中点,侧面B1C1CB⊥底面ABC,且AC1⊥BC.
(Ⅰ)求证:BC⊥C1M;
(Ⅱ)求二面角A1-AB-C的平面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图,已知四边形ABCD为菱形,且∠A=60°,E,F分别为AB,AD的中点,现将四边形EBCD沿DE折起至EBHD.

(Ⅰ)求证:EF∥平面ABH;
(Ⅱ)若平面EBHD⊥平面ADE,求二面角B-AH-D的平面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知A∈α,AB=5,$AC=2\sqrt{2}$,且AB与α所成角的正弦值为$\frac{4}{5}$,AC与α所成的角为45°,点B,C在平面α同侧,则BC长的范围为(  )
A.$[5-2\sqrt{2},5+2\sqrt{2}]$B.$[\sqrt{5},\sqrt{29}]$C.$[\sqrt{5},\sqrt{61}]$D.$[\sqrt{29},\sqrt{61}]$

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知函数f(x)=alnx+$\frac{{x}^{2}}{2}$-(a+1)x.
(Ⅰ)当a>0时,求函数f(x)的单调区间;
(Ⅱ)当a=-1时,证明$f(x)≥\frac{1}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知函数f(x)=ex(ax2+bx+1)(其中a,b∈R),函数f(x)的导函数为f′(x),且f′(-1)=0.
(Ⅰ)若b=1,求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)若函数f(x)在区间[-1,1]上的最小值为0,求b的值.

查看答案和解析>>

同步练习册答案