相关习题
 0  234742  234750  234756  234760  234766  234768  234772  234778  234780  234786  234792  234796  234798  234802  234808  234810  234816  234820  234822  234826  234828  234832  234834  234836  234837  234838  234840  234841  234842  234844  234846  234850  234852  234856  234858  234862  234868  234870  234876  234880  234882  234886  234892  234898  234900  234906  234910  234912  234918  234922  234928  234936  266669 

科目: 来源: 题型:解答题

9.已知函数f(x)=2x3-3ax2+1(x∈R).
(1)若f(x)在x=2处取得极值,求实数a的值;
(2)求f(x)的单调递增区间;
(3)求函数f(x)在闭区间[0,2]的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

8.设f(x)=ax2-bx+6lnx+15,其中a∈R,曲线y=f(x)在x=1和x=6处的切线都与直线$y=-\frac{1}{2}x+3$垂直.
(1)确定a,b的值;
(2)求函数f(x)的单调区间与极值.

查看答案和解析>>

科目: 来源: 题型:填空题

7.函数$y=x+\frac{1}{2x}$的值域为$({-∞,-\sqrt{2}}]∪[{\sqrt{2},+∞})$.

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,ABCD是正方形,PD⊥平面ABCD,PD=AB=2,E,F,G分别 是PC,PD,BC的中点.
(Ⅰ)求证:平面PAB∥平面EFG
(Ⅱ)求二面角P-AB-C的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知函数f(x)=lnx-2x2+3x
(Ⅰ)求函数f(x)的极值;
(Ⅱ)证明:存在m∈(0,+∞),使得f(m)=f($\frac{1}{2}$)
(Ⅲ)记函数y=f(x)的图象为曲线Γ.设点A(x1,y1),B(x2,y2)是曲线Γ上的不同两点.如果在曲线Γ上存在点M(x0,y0),使得:
①x0=$\frac{{x}_{1}+{x}_{2}}{2}$;
②曲线Γ在点M处的切线平行于直线AB,则称函数f(x)存在“中值伴随切线”,试问:函数f(x)是否存在“中值伴随切线”?请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知函数f(x)=xlnx.
(Ⅰ)求曲线f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求函数g(x)=f(x)+x2-3x的单调区间及极值;
(Ⅲ)对?x≥1,f(x)≤m(x2-1)成立,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

3.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.
如图,在阳马P-ABCD中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作
EF⊥PB交PB于点F,连接DE,DF,BD,BE.
(1)证明:平面PBD⊥平面DEF.试判断四面体F-DBE是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;
(2)若平面DEF与平面ABCD所成二面角的大小为60°,求$\frac{DA}{AB}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知f(x)=xlnx.
(Ⅰ)求函数f(x)在[m,m+2](m>0)上的最小值;
(Ⅱ)证明:对一切x∈(0,+∞),都有$f(x)>\frac{x}{e^x}-\frac{2}{e}$成立,其中e为自然对数的底数.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知函数f(x)=lnx-a(x-1),g(x)=ex,其中e为自然对数的底数.
(Ⅰ)设$t(x)=\frac{1}{x}g(x),x∈(0,+∞)$,求函数t(x)在[m,m+1](m>0)上的最小值;
(Ⅱ)过原点分别作曲线y=f(x)与y=g(x)的切线l1,l2,已知两切线的斜率互为倒数,
求证:a=0或$\frac{e-1}{e}<a<\frac{{{e^2}-1}}{e}$.

查看答案和解析>>

科目: 来源: 题型:填空题

20.已知函数f(x)=x2e-x,则f(x)的极大值为$\frac{4}{{e}^{2}}$.

查看答案和解析>>

同步练习册答案