相关习题
 0  234759  234767  234773  234777  234783  234785  234789  234795  234797  234803  234809  234813  234815  234819  234825  234827  234833  234837  234839  234843  234845  234849  234851  234853  234854  234855  234857  234858  234859  234861  234863  234867  234869  234873  234875  234879  234885  234887  234893  234897  234899  234903  234909  234915  234917  234923  234927  234929  234935  234939  234945  234953  266669 

科目: 来源: 题型:填空题

10.f(x)是定义在D上的函数,若存在区间[m,n]⊆D,使函数f(x)在[m,n]上的值域恰为[km,kn],则称区间[m,n]为函数f(x)的k倍区间.若区间[m,n]为函数f(x)=$\frac{({a}^{2}+a)x-2}{{a}^{2}x}$(a≠0)的2倍区间,则n-m的最大值为$\frac{2\sqrt{15}}{15}$.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数f(x)=ex-m+ln$\frac{3}{x}$.
(Ⅰ)设x=1是函数f(x)的极值点,求m的值并讨论f(x)的单调性;
(Ⅱ)当m≤2时,证明:f(x)>ln3.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(x>0)的离心率等于$\frac{\sqrt{3}}{2}$,椭圆C上的点到焦点的距离的最大值为4+2$\sqrt{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左右顶点分别为A,B,过点P(-2,0)的动直线(x轴除外)与椭圆C相交于M,N两点,是否存在定直线l:x=t,使得AM与BN的交点Q总在直线l上?若存在,求出l的方程;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知函数f(x)=x2+mx,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在y=f(x)图象上,且a1,a3,a9成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}通项公式为bn=$\frac{(2n+1)(-1)^{n-1}}{{S}_{n}}$,前n项和为Tn,求Tn,并判定Tn的单调性.

查看答案和解析>>

科目: 来源: 题型:解答题

6.某大型商场成立十周年之际,为了回馈顾客,特进行有奖销售:有奖销售期间,每购买满100元该商场的商品,都有一次抽奖机会,一旦中奖,将获得一个精美奖品;抽奖方案有A、B两种,可自主选择,A方案是:从装有3个红色小球和7个白色小球的箱子里每次摸1个小球,不放回地摸3次,若至少摸到两个红球就中奖,否则无奖;B方案是:从装有3个红色小球和7个白色小球的箱子里每次摸1个小球,有放回地摸3次,若至少有两次摸到红球就中奖,否则无奖;其中箱子里的小球除颜色和编号外完全相同.
(Ⅰ)若某顾客用A方案抽奖一次,求他抽到的3个小球中红球个数X的分布列和期望;
(Ⅱ)若甲、乙两顾客分别用A、B方案各抽奖一次,它们中奖的概率是否相同?若你去抽奖,将选择哪种方案?说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

5.设$(f(x,y))=({\begin{array}{l}xy1\end{array}})({\begin{array}{l}1&0&1\\ 0&1&1\\ 1&1&{-2}\end{array}})({\begin{array}{l}x\\ y\\ 1\end{array}})$,点A(x1,y1)满足方程f(x,y)=0,点B(-1,-1).
(1)计算$|{\overrightarrow{AB}}$|; 
(2)O为坐标原点,当$\overrightarrow{AO}$⊥$\overrightarrow{BO}$时,计算$|{\overrightarrow{AO}}$|; 
(3)求$|{\overrightarrow{OA}}$|的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

4.歌德巴赫(Goldbach.C.德.1690-1764)曾研究过“所有形如$\frac{1}{{{{(n+1)}^{m+1}}}}$(m,n为正整数)的分数之和”问题.为了便于表述,引入记号:$\sum_{n=1}^∞{\sum_{m=1}^∞{\frac{1}{{{{(n+1)}^{m+1}}}}}}$=$(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+…)+(\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+…)+…+(\frac{1}{{{{(n+1)}^2}}}+\frac{1}{{{{(n+1)}^3}}}+\frac{1}{{{{(n+1)}^4}}}+…)+…$
写出你对此问题的研究结论:$\sum_{n=1}^∞{\sum_{m=1}^∞{\frac{1}{{{{(n+1)}^{m+1}}}}=1}}$(用数学符号表示).

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知各项均为正数的数列{an}的前n项和为Sn.数列{an}中的项按下列规律过程构成无穷多个行列式:|$\begin{array}{l}{a_1}{a_2}{a_3}\\{a_4}{a_5}{a_6}\\{a_7}{a_8}{a_9}\end{array}|,|\begin{array}{l}{a_7}{a_8}{a_9}\\{a_{10}}{a_{11}}{a_{12}}\\{a_{13}}{a_{14}}{a_{15}}\end{array}|,|\begin{array}{l}{a_{13}}{a_{14}}{a_{15}}\\{a_{16}}{a_{17}}{a_{18}}\\{a_{19}}{a_{20}}{a_{21}}\end{array}|…,记{A_i}为{a_i}$(i=1,2,3…)的代数余子式.
(1)若Sn=2n2+n,求A1,A4,A6,A9
(2)若数列{an}为等差数列,A3=-27$,\;{a_1}=5\;,\;{b_n}=\frac{a_n}{2^n}$,求数列{bn}的前n项和Tn
(3)数列{an}为公差不为0的等差数列,Ai=λ(Ai-k+Ai+k),其中i,i-k,i+k,k∈N*.试研究λ的所有可能值,并指出取到每个值时的条件(注:本小题将根据考生研究的情况分层评分).

查看答案和解析>>

科目: 来源: 题型:填空题

2.设常数a∈R,以方程|x+a|•2x=2013的根的可能个数为元素的集合A={1,2,3}.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知点${F_1}(-\sqrt{2},0)、{F_2}(\sqrt{2},0)$,平面直角坐标系上的一个动点P(x,y)满足$|\overrightarrow{P{F_1}}|+|\overrightarrow{P{F_2}}|=4$.设动点P的轨迹为曲线C.
(1)求曲线C的轨迹方程;
(2)已知点A、B是曲线C上的两个动点,若$\overrightarrow{OA}⊥\overrightarrow{OB}$(O是坐标原点),试证明:原点O到直线AB的距离是定值.

查看答案和解析>>

同步练习册答案