相关习题
 0  234773  234781  234787  234791  234797  234799  234803  234809  234811  234817  234823  234827  234829  234833  234839  234841  234847  234851  234853  234857  234859  234863  234865  234867  234868  234869  234871  234872  234873  234875  234877  234881  234883  234887  234889  234893  234899  234901  234907  234911  234913  234917  234923  234929  234931  234937  234941  234943  234949  234953  234959  234967  266669 

科目: 来源: 题型:解答题

10.如图所示的几何体中,四边形ABCD为等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.
(1)求证:BD⊥平面AED;
(2)若△EAD中,AE=ED,∠EAD=45°,求二面角F-BD-E的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知实数m,n满足2m-n=3.
(1)若|m|+|n+3|≥9,求实数m的取值范围;
(2)求$|{\frac{5}{3}m-\frac{1}{3}n}|+|{\frac{1}{3}m-\frac{2}{3}n}$|的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

8.请你为某养路处设计一个用于储藏食盐的仓库(供融化高速公路上的积雪之用).它的上部是底面圆半径为5m的圆锥,下部是底面圆半径为5m的圆柱,且该仓库的总高度为5m.经过预算,制造该仓库的圆锥侧面、圆柱侧面用料的单价分别为4百元/m2,1百元/m2,设圆锥母线与底面所成角为θ,且θ∈(0,$\frac{π}{4}$),问当θ为多少时,该仓库的侧面总造价(单位:百元)最少?并求出此时圆锥的高度.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知函数f(x)=4sinxcos(x+$\frac{π}{6}$)+1
(1)求函数f(x)的最小正周期,并写出的单调递增区间
(2)在△ABC,角A,B,C的对边分别为a,b,c,若f(A)=2,a=3,S△ABC=$\sqrt{3}$,求b2+c2的值.

查看答案和解析>>

科目: 来源: 题型:填空题

6.关于x的方程$\sqrt{3}$cosx+sinx-a=0在区间[0,π]上恰有两个不等实根α,β,则α+β的值为$\frac{π}{3}$.

查看答案和解析>>

科目: 来源: 题型:选择题

5.设A1,A2,A3,…,An是集合{1,2,3,…,n}的n个非空子集(n≥2),定义aij=$\left\{\begin{array}{l}{0{,A}_{i}∩{A}_{j}=∅}\\{1,{A}_{i}∩{A}_{j}≠∅}\end{array}\right.$,其中i,j=1,2,…,n,这样得到的n2个数之和记为S(A1,A2,A3,…,An),简记为S,下列三种说法:①S与n的奇偶性相同;②S是n的倍数;③S的最小值为n,最大值为n2.其中正确的判断是(  )
A.①②B.①③C.②③D.

查看答案和解析>>

科目: 来源: 题型:填空题

4.已知f(x)=$\frac{x}{x+1}$,x≥0,若f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N+,则f2016(x)的表达式为${f_{2016}}(x)=\frac{x}{1+2016x}$.

查看答案和解析>>

科目: 来源: 题型:填空题

3.方程2(log3x)2+log3x-3=0的解是${3}^{-\frac{3}{2}}$,3.

查看答案和解析>>

科目: 来源: 题型:填空题

2.函数f(x)=loga(4-x2)在区间[0,2)上单调递增,则实数a取值范围为0<a<1.

查看答案和解析>>

科目: 来源: 题型:填空题

1.半径r=1的圆内有一条弦AB,长度为$\sqrt{3}$,则弦AB所对的劣弧长等于$\frac{2π}{3}$.

查看答案和解析>>

同步练习册答案