相关习题
 0  234775  234783  234789  234793  234799  234801  234805  234811  234813  234819  234825  234829  234831  234835  234841  234843  234849  234853  234855  234859  234861  234865  234867  234869  234870  234871  234873  234874  234875  234877  234879  234883  234885  234889  234891  234895  234901  234903  234909  234913  234915  234919  234925  234931  234933  234939  234943  234945  234951  234955  234961  234969  266669 

科目: 来源: 题型:解答题

10.已知函数f(x)=(3-a)x-2+a-2lnx(a∈R).
(Ⅰ)若a≤3,试讨论函数f(x)的单调性;
(Ⅱ)若函数f(x)>x在(0,$\frac{1}{2}$)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知某公司生产一种仪器元件,年固定成本为20万元,每生产1万件仪器元件需另外投入8.1万元,设该公司一年内共生产此种仪器元件x万件并全部销售完,每万件的销售收入为f(x)万元,且
f(x)=$\left\{\begin{array}{l}32.4-\frac{1}{10}{x^2}(0<x≤10)\\ \frac{324}{x}-\frac{1000}{x^2}(x>10)\end{array}$
(Ⅰ)写出年利润y(万元)关于年产品x(万件)的函数解析式;
(Ⅱ)当年产量为多少万件时,该公司生产此种仪器元件所获年利润最大?
(注:年利润=年销售收入-年总成本)

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知函数f(x)=lnx,g(x)=$\frac{1}{3}$ax+b(a、b为常数).
(Ⅰ)若函数f(x)与g(x)的图象在(1,f(1))处相切,求g(x)的解析式;
(Ⅱ)设函数h(x)=f(x)+$\frac{a}{x}$(a>1),若h(x)在[1,e]上的最小值为2,求实数a的值.

查看答案和解析>>

科目: 来源: 题型:填空题

7.观察如图数表:

设1033是该表第m行的第n个数,则m+n=16.

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知函数g(x)满足g(x)=g($\frac{1}{x}$),当x∈[$\frac{1}{3}$,1]时,g(x)=-3lnx.若函数f(x)=g(x)-mx在区间[$\frac{1}{3}$,3]上有三个不同的零点,则实数m的取值范围是(  ),则实数m的取值范围是(  )
A.[$\frac{ln3}{3}$,$\frac{1}{e}$)B.[ln3,$\frac{3}{e}$)C.[ln3,$\frac{1}{e}$)D.(0,$\frac{1}{e}$)

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知函数f(x)=alnx-x(a∈R).
(Ⅰ)若直线y=2x+b是函数f(x)在点(1,f(1))处的切线,求实数a,b的值;
(Ⅱ)若对任意的x∈(0,+∞),都有f(x)≤0成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图,四棱锥B-ACDE的底面ACDE满足 DE∥AC,AC=2DE.
(Ⅰ)若DC⊥平面ABC,AB⊥BC,求证:平面ABE⊥平面BCD;
(Ⅱ)求证:在平面ABE内不存在直线与DC平行;
某同学用分析法证明第(1)问,用反证法证明第 (2)问,证明过程如下,请你在横线上填上合适的内容.
(Ⅰ)证明:欲证平面ABE⊥平面BCD,
只需证AB⊥平面BCD,
由已知AB⊥BC,只需证AB⊥DC,
由已知DC⊥平面ABC可得DC⊥AB成立,
所以平面ABE⊥平面BCD.
(Ⅱ)证明:假设在平面ABE内存在直线与DC平行,
又因为DC?平面ABE,所以DC∥平面ABE.
又因为平面ACDE∩平面ABE=AE,
所以DC∥AE,
又因为DE∥AC,所以ACDE是平行四边形,
所以AC=DE,这与AC=2DE矛盾,
所以假设错误,原结论正确.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知函数f(x)=ax3+bx2+cx,其导函数为f′(x)的部分值如表所示:
x-20138
f′(x)-10680-90
根据表中数据,回答下列问题:
(Ⅰ)实数c的值为6;当x=3时,f(x)取得极大值(将答案填写在横线上).
(Ⅱ)求实数a,b的值.
(Ⅲ)求f(x)的单调区间.

查看答案和解析>>

科目: 来源: 题型:填空题

2.若函数y=ax+cosx是增函数,则实数a的范围是[1,+∞).

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知函数f(x)的导函数f′(x)=(1-x)e-x.若f(x)在(m,m+2)上单调递增,则实数m的取值范围是(  )
A.[1,+∞)B.(-∞,1]C.[-1,+∞)D.(-∞,-1]

查看答案和解析>>

同步练习册答案