相关习题
 0  234787  234795  234801  234805  234811  234813  234817  234823  234825  234831  234837  234841  234843  234847  234853  234855  234861  234865  234867  234871  234873  234877  234879  234881  234882  234883  234885  234886  234887  234889  234891  234895  234897  234901  234903  234907  234913  234915  234921  234925  234927  234931  234937  234943  234945  234951  234955  234957  234963  234967  234973  234981  266669 

科目: 来源: 题型:解答题

10.设集合A={x||x-a|<2},B={x|$\frac{1}{4}$<2x<8}.
(1)若a=-1,求集合A;
(2)若A∩B=A,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

9.圆x2+y2+Dx+Ey-4=0的圆心为(-1,2),则圆的半径为(  )
A.6B.9C.3D.2

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知{an},{bn}为两非零有理数列(即对任意的i∈N*,ai,bi均为有理数),{dn}为一无理数列(即对任意的i∈N*,di为无理数).
(1)已知bn=-2an,并且(an+bndn-andn2)(1+dn2)=0对任意的n∈N*恒成立,试求{dn}的通项公式.
(2)若{dn3}为有理数列,试证明:对任意的n∈N*,(an+bndn-andn2)(1+dn2)=1恒成立的充要条件为$\left\{{\begin{array}{l}{{a_n}=\frac{1}{{1+{d_n}^6}}}\\{{b_n}=\frac{{{d_n}^3}}{{1+{d_n}^6}}}\end{array}}$.
(3)已知sin2θ=$\frac{24}{25}$(0<θ<$\frac{π}{2}$),dn=$\root{3}{{tan(n•\frac{π}{2}+{{(-1)}^n}θ)}}$,试计算bn

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图,斜三棱柱ABC-A1B1C1的侧面AA1C1C是菱形,侧面ABB1A1⊥侧面AA1C1C,A1B=AB=AA1=2,△AA1C1的面积为$\sqrt{3}$,且∠AA1C1为锐角.
(I) 求证:AA1⊥BC1
(Ⅱ)求三棱锥A1-ABC1的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知△ABC内角A,B,C的对边分别是a,b,c,且满足$\sqrt{3}$asinC=c(cosA+1).
(I) 求角A的大小;
(Ⅱ)已知函数f(x)=sin(ωx+A)的最小正周期为π,求f(x)的减区间.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知函数f(x)=lnx-x+$\frac{a}{x}$+1(a∈R).
(1)讨论f(x)的单调性与极值点的个数;
(2)当a=0时,关于x的方程f(x)=m(m∈R)有2个不同的实数根x1,x2,证明:x1+x2>2.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如表是一个由n2个正数组成的数表,用aij表示第i行第j个数(i,j∈N),已知数表中第一列各数从上到下依次构成等差数列,每一行各数从左到右依次构成等比数列,且公比都相等.已知a11=1,a31+a61=9,a35=48.
(1)求an1和a4n
(2)设bn=$\frac{{{a_{4n}}}}{{({{a_{4n}}-2})({{a_{4n}}-1})}}$+(-1)n•a${\;}_{{n}_{1}}$(n∈N+),求数列{bn}的前n项和Sn

查看答案和解析>>

科目: 来源: 题型:解答题

3.某校在高二年级实行选课走班教学,学校为学生提供了多种课程,其中数学科提供5种不同层次的课程,分别称为数学1、数学2、数学3、数学4、数学5,每个学生只能从这5种数学课程中选择一种学习,该校高二年级1800名学生的数学选课人数统计如表:
课程数学1数学2数学3数学4数学5合计
选课人数1805405403601801800
为了了解数学成绩与学生选课情况之间的关系,用分层抽样的方法从这1800名学生中抽取了10人进行分析.
(1)从选出的10名学生中随机抽取3人,求这3人中至少有2人选择数学2的概率;
(2)从选出的10名学生中随机抽取3人,记这3人中选择数学2的人数为X,选择数学1的人数为Y,设随机变量ξ=X-Y,求随机变量ξ的分布列和数学期望E(ξ).

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,已知四棱锥P-ABCD中,底面ABCD是直角梯形,∠ADC=90°,AB∥CD,AD=DC=$\frac{1}{2}$AB=$\sqrt{2}$,平面PBC⊥平面ABCD.
(1)求证:AC⊥PB;
(2)若PB=PC=$\sqrt{2}$,问在侧棱PB上是否存在一点M,使得二面角M-AD-B的余弦值为$\frac{{5\sqrt{3}}}{9}$?若存在,求出$\frac{PM}{PB}$的值;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

1.在△ABC中,内角A,B,C的对边分别为a,b,c,且3cosAcosB+1=3sinAsinB+cos2C.
(1)求C
(2)若△ABC的面积为5$\sqrt{3}$,b=5,求sinA.

查看答案和解析>>

同步练习册答案