相关习题
 0  234803  234811  234817  234821  234827  234829  234833  234839  234841  234847  234853  234857  234859  234863  234869  234871  234877  234881  234883  234887  234889  234893  234895  234897  234898  234899  234901  234902  234903  234905  234907  234911  234913  234917  234919  234923  234929  234931  234937  234941  234943  234947  234953  234959  234961  234967  234971  234973  234979  234983  234989  234997  266669 

科目: 来源: 题型:填空题

19.已知直线l:$\left\{\begin{array}{l}{x=-1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,a≥2为l的倾斜角),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2-6ρcosθ+5=0.若直线l与曲线C相切,则α的值为$\frac{π}{6}$或$\frac{5π}{6}$.

查看答案和解析>>

科目: 来源: 题型:解答题

18.如图,四边形ABCD为矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于点F,且点F在CE上.
(1)求证:AE⊥BE;
(2)求三棱锥D-AEC的体积;
(3)设点M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.

查看答案和解析>>

科目: 来源:2016-2017学年安徽六安一中高一上国庆作业二数学试卷(解析版) 题型:解答题

已知函数是定义在上的奇函数,且当时有.

①求的解析式;

②求的值域;

③若,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

17.若函数f(x)是定义域D内的某个区间I上的增函数,且$F(x)=\frac{f(x)}{x}$在I上是减函数,则称y=f(x)是I上的“单反减函数”,已知$f(x)=lnx,g(x)=2x+\frac{2}{x}+alnx(a∈R)$(1)判断f(x)在(0,1]上不是(填是或不是)“单反减函数”;  (2)若g(x)是[1,+∞)上的“单反减函数”,则实数a的取值范围为[0,4].

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知Sn是数列{an}的前n项和,且满足Sn+Sn-1=tan2(其中t为常数,t>0,n≥2),已和a1=0,且当n≥2时,an>0.
(1)求数列{an}的通项公式;
(2)若对于n≥2,n∈N*,不等式$\frac{1}{{{a_2}{a_3}}}+\frac{1}{{{a_3}{a_4}}}+\frac{1}{{{a_4}{a_5}}}+…+\frac{1}{{{a_n}{a_{n+1}}}}<2$恒成立,求t的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图,在四棱锥P-ABCD中,E为AD上一点,面PAD⊥面ABCD,四边形
BCDE为矩形∠PAD=60°,PB=2$\sqrt{3}$,PA=ED=2AE=2.
(Ⅰ)求证:CB⊥面PEB
(Ⅱ) 已知$\overrightarrow{PF}=λ\overrightarrow{PC}({λ∈R})$,且PA∥面BEF,求λ的值.

查看答案和解析>>

科目: 来源: 题型:填空题

14.已知箱子里装有4张大小、形状都相同的卡片,标号分别为1,2,3,4.从箱子中任意取出一张卡片,记下它的标号m,然后再放回箱子中;第二次再从箱子中任取一张卡片,记下它的标号n,则使得幂函数f(x)=(m-n)2x${\;}^{\frac{m}{n}}$图象关于y轴对称的概率为$\frac{3}{16}$.

查看答案和解析>>

科目: 来源: 题型:填空题

13.某三棱锥的三视图如图所示,正视图、侧视图均为直角三角形,则该三棱锥的四个面中,面积最大的面的面积是$\sqrt{7}$.

查看答案和解析>>

科目: 来源: 题型:选择题

12.若直角坐标平面内两相异点A、B两点满足:
①点A、B都在函数 f (x) 的图象上;②点A、B关于原点对称,
则点对 (A,B) 是函数 f (x) 的一个“姊妹点对”.点对 (A,B) 与 (B,A) 可看作是同一个“姊妹点对”.已知函数 f (x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x<0}\\{\frac{x+1}{e},x≥0}\end{array}\right.$,则 f (x) 的“姊妹点对”有(  )
A.0 个B.1 个C.2 个D.3 个

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知直线$l:ρsin(θ-\frac{π}{4})=4$和圆$C:ρ=2k•cos(θ+\frac{π}{4})(k≠0)$,直线上的点到圆C上的点的最小距离等于2
(1)求直线L的直角坐标方程;
(2)求k的值.

查看答案和解析>>

同步练习册答案