相关习题
 0  234837  234845  234851  234855  234861  234863  234867  234873  234875  234881  234887  234891  234893  234897  234903  234905  234911  234915  234917  234921  234923  234927  234929  234931  234932  234933  234935  234936  234937  234939  234941  234945  234947  234951  234953  234957  234963  234965  234971  234975  234977  234981  234987  234993  234995  235001  235005  235007  235013  235017  235023  235031  266669 

科目: 来源: 题型:解答题

14.已知点A(1,0),B(0,1),C(2sinθ,cosθ).
(1)若|$\overrightarrow{AC}$|=|$\overrightarrow{BC}$|,求$\frac{sinθ+2cosθ}{sinθ-cosθ}$的值;
(2)若($\overrightarrow{OA}$+2$\overrightarrow{OB}$)•$\overrightarrow{OC}$=1,其中O为坐标原点,求sinθ•cosθ的值.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图,四棱锥P-ABCD的底面是边长为a的正方形,PA⊥平面ABCD,PA=a,E为CP中点,
(1)求PB与平面BDE所成的角;
(2)求二面角B-DE-P的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知函数f(x)=(x+1)lnx-a(x-1),a∈R
(1)若a=0时,求f(x)在x=1处的切线
(2)若函数f(x)>0 对?x∈(1,+∞)恒成立.求a的取值范围
(3)从编号为1到2015的2015个小球中,有放回地连续取16次小球 (每次取一球),记所取得的小球的号码互不相同的概率为p,求证:$\frac{1}{p}$>e${\;}^{\frac{120}{2011}}$.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知点A(2,0)B(0,-4)
(1)写出△AOB的外接圆方程
(2)设直线l:3x-4y-1=0与△AOB的外接圆交于A,B两点,求|AB|

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图,在直角梯形ABCD中,∠BAD=90°,AD∥BC,AB=2,AD=$\frac{3}{2}$,BC=$\frac{1}{2}$,椭圆以A、B为焦点且经过点D.
(Ⅰ)建立适当的直角坐标系,求椭圆的方程;
(Ⅱ)若点E满足$\overrightarrow{EC}$=$\frac{1}{2}$$\overrightarrow{AB}$,问是否存在直线l与椭圆交于M、N两点,且|ME|=|NE|?若存在,求出直线l与AB夹角θ的正切值的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,焦距为4,且经过点(2,-3).若点P在椭圆上,且在x轴上方,$\overrightarrow{P{F}_{1}}$•$\overrightarrow{{F}_{1}{F}_{2}}$=0.
(1)求椭圆C的方程;
(2)①求△PF1F2的内切圆M的方程;
②若直线l过△PF1F2的内切圆圆心M,交椭圆于A,B两点,且A,B关于点M对称,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:选择题

8.长方体ABCD-A1B1C1D1中,AB=AA1=2,AD=1,则异面直线BC1与AC所成角的余弦值为(  )
A.$\frac{{\sqrt{10}}}{10}$B.$\frac{1}{5}$C.$\frac{{\sqrt{10}}}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

7.函数f(x)=x3+ax2+3x-1在x=-3时取得极值,则a=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目: 来源: 题型:填空题

6.如图所示,在△OAB中,M、N分别是OA、OB的中点,点P在梯形ABNM区域(含边界)上移动,且$\overrightarrow{OP}=x\overrightarrow{OM}+y\overrightarrow{ON}$,则4x+3y的取值范围是[3,8].

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2.E是PB的中点.
(Ⅰ)求证:平面EAC⊥平面PBC;
(Ⅱ)求二面角P-AC-E的余弦值;
(Ⅲ)求直线PA与平面EAC所成角的正弦值.

查看答案和解析>>

同步练习册答案