相关习题
 0  234840  234848  234854  234858  234864  234866  234870  234876  234878  234884  234890  234894  234896  234900  234906  234908  234914  234918  234920  234924  234926  234930  234932  234934  234935  234936  234938  234939  234940  234942  234944  234948  234950  234954  234956  234960  234966  234968  234974  234978  234980  234984  234990  234996  234998  235004  235008  235010  235016  235020  235026  235034  266669 

科目: 来源: 题型:解答题

4.在直角坐标系xoy中,点P到两点$(-2\sqrt{2},0)$、$(2\sqrt{2},0)$的距离之和等于6,设点P的轨迹为曲线C,直线x-my-1=0与曲线C交于A、B两点.
(Ⅰ)求曲线C的方程;
(Ⅱ)若以线段AB为直径的圆过坐标原点,求m的值;
(Ⅲ)当实数m取何值时,△AOB的面积最大,并求出面积的最大值.

查看答案和解析>>

科目: 来源: 题型:填空题

3.已知函数f(x)=ax-lnx在($\frac{1}{2}$,+∞)上单调递增,则a的取值范围为[2,+∞).

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知函数f(x)=ex-ax-1(a∈R)
(1)若a=1,求函数f(x)的单调区间;
(2)若函数F(x)=f(x)-xlnx在定义域内存在零点,试求实数a的取值范围;
(3)若g(x)=ln(gx-1)lnx,且f(g(x))<f(x)在x∈(0,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,四棱锥P-ABCD中,侧面PDC是边长为2的正三角形,底面ABCD是菱形,∠ADC=60°,点P在底面ABCD上的射影为△ACD的重心,点M为线段PB上的点.
(1)当点M为PB的中点时,求证:PD∥平面ACM;
(2)当平面CDM与平面CBM所成锐二面角的余弦值为$\frac{2}{3}$时,求$\frac{BM}{BP}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,BC=$\sqrt{2}$,且PC⊥CD,BC⊥PA,E是PB的中点.
(1)求证:平面PBC⊥平面EAC;
(2)若二面角P-AC-E的正弦值为$\frac{{\sqrt{3}}}{3}$,求直线PA与平面EAC所成角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知圆$C:{(x+\sqrt{3})^2}+{y^2}=16,点A(\sqrt{3},0)$,Q是圆上一动点,AQ的垂直平分线交CQ于点M,设点M的轨迹为E.
(I)求轨迹E的方程;
(II)过点A作圆x2+y2=1的切线l交轨迹E于B,D两点,求|BD|的值.

查看答案和解析>>

科目: 来源: 题型:解答题

18.在如图的几何体中,四边形CDEF为正方形,四边形ABCD为等腰梯形,AB∥CD,AB=2BC,∠ABC=60°,AC⊥FB.
(1)求证:AC⊥平面FBC;
(2)求平面CBF与平面ADE所成夹角的正弦值.

查看答案和解析>>

科目: 来源: 题型:选择题

17.函数$f(x)=sinx-\frac{1}{2}x(x∈(-π,π)$的极大值点为(  )
A.$(\frac{π}{3},\frac{{\sqrt{3}}}{2}-\frac{π}{6})$B.$(-\frac{π}{3},\frac{π}{6}-\frac{{\sqrt{3}}}{2})$C.$x=\frac{π}{3}$D.$x=-\frac{π}{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知函数$f(x)=lnx-\frac{1}{2}x$.
(Ⅰ)求f(x)的图象在点(1,f(1))处的切线方程;
(Ⅱ)当x>1时,$f(x)+\frac{a}{x}<0$恒成立,求实数a的取值范围;
(Ⅲ)证明:当n∈N*且n≥2时,$\frac{1}{2ln2}+\frac{1}{3ln3}+…+\frac{1}{nlnn}>\frac{{3{n^2}-n-2}}{{2{n^2}+2n}}$.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图,四棱锥P-ABCD中,PB⊥底面ABCD.底面ABCD为直角梯形,∠ABC=90°,AD∥BC,BC=2,AB=AD=PB=1,点E为棱PA的中点.
(Ⅰ)求证:CD⊥平面PBD;
(Ⅱ)求二面角A-BE-D的余弦值.

查看答案和解析>>

同步练习册答案