相关习题
 0  234854  234862  234868  234872  234878  234880  234884  234890  234892  234898  234904  234908  234910  234914  234920  234922  234928  234932  234934  234938  234940  234944  234946  234948  234949  234950  234952  234953  234954  234956  234958  234962  234964  234968  234970  234974  234980  234982  234988  234992  234994  234998  235004  235010  235012  235018  235022  235024  235030  235034  235040  235048  266669 

科目: 来源: 题型:填空题

4.正整数按图表的规律排列,则上起第17行,左起第11列的数应为117.

查看答案和解析>>

科目: 来源: 题型:解答题

3.在平面直角坐标系xOy中,已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的右焦点为$(\sqrt{2},0)$,且经过点$(\frac{{\sqrt{2}}}{2},-\frac{{\sqrt{7}}}{2})$,过椭圆的左顶点A作直线l⊥x轴,点M为直线l上的动点(点M与点A不重合),点B为椭圆右顶点,直线BM交椭圆C于点P.
(1)求椭圆C的方程;
(2)求证:AP⊥OM;
(3)试问$\overrightarrow{OP}•\overrightarrow{OM}$是否为定值?若是定值,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知函数f(x)=-x3+3x2+9x+a.
(1)当a=-10时,求f(x)在x=2处的切线方程;
(2)若f(x)在区间[-2,2]上的最大值为18,求它在该区间上的最小值.

查看答案和解析>>

科目: 来源: 题型:填空题

1.集合{1,2,3,…,n}(n≥3)中,每两个相异数作乘积,将所有这些乘积的和记为Tn,如:${T_3}=1×2+1×3+2×3=\frac{1}{2}[{6^2}-({1^2}+{2^2}+{3^2})]=11$;${T_4}=1×2+1×3+1×4+2×3+2×4+3×4=\frac{1}{2}[{10^2}-({1^2}+{2^2}+{3^2}+{4^2})]=35$;${T_5}=1×2+1×3+1×4+1×5+…+3×5+4×5=\frac{1}{2}[{15^2}-({1^2}+{2^2}+{3^2}+{4^2}+{5^2})]=85$
则T8=546.(写出计算结果)

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知直线l:$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数),曲线C1:x2+y2=1
(1)设l与C1相交于A,B两点,求|AB|.
(2)若曲线C1上各点的横坐标压缩为原来的$\frac{1}{2}$,纵坐标压缩为原来的$\frac{{\sqrt{3}}}{2}$,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

19.为了调查胃病是否与生活规律有关,在某地对540名40岁以上的人进行了调查,结果是:患胃病者生活不规律的共80人,患胃病者生活规律的共20人,未患胃病者生活不规律的共240人,未患胃病者生活规律的共200人.
(1)根据以上数据列出2×2列联表.
(2)能否在犯错误的概率不超过0.001的前提下认为40岁以上的人患胃病和生活规律有关系?
参考公式与临界值表:${K_{\;}}^2=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.1000.0500.0250.0100.001
ko2.7063.8415.0246.63510.828

查看答案和解析>>

科目: 来源: 题型:选择题

18.在极坐标系中,点M(2,$\frac{π}{3}$)到直线l:ρsin(θ+$\frac{π}{4}$)=$\frac{{\sqrt{2}}}{2}$的距离为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{6}}}{2}$C.$\frac{3}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

17.设f(x)=$\sqrt{10sinx-2}-\sqrt{5cosx-3}$
(1)若锐角θ满足tan2θ=$\frac{24}{7}$,问:θ是否为方程f(x)=1的解?为什么?
(2)求方程f(x)=1在区间(-∞,+∞)上的解集.

查看答案和解析>>

科目: 来源: 题型:选择题

16.函数y=$\sqrt{2}sin({x-{{45}°}})-sinx$(  )
A.是奇函数但不是偶函数B.是偶函数但不是奇函数
C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知函数f(x)=lnx-ax+3,a∈R.
(1)当a=1时,计算函数的极值;
(2)求函数的单调区间.

查看答案和解析>>

同步练习册答案