相关习题
 0  234867  234875  234881  234885  234891  234893  234897  234903  234905  234911  234917  234921  234923  234927  234933  234935  234941  234945  234947  234951  234953  234957  234959  234961  234962  234963  234965  234966  234967  234969  234971  234975  234977  234981  234983  234987  234993  234995  235001  235005  235007  235011  235017  235023  235025  235031  235035  235037  235043  235047  235053  235061  266669 

科目: 来源: 题型:选择题

17.从某电视塔的正东方向的A处,测得塔顶仰角是60°,从电视塔的西偏南30°的B处,测得塔顶仰角为45°,A、B间距离为35m,则此电视塔的高度是(  )
A.5$\sqrt{21}$mB.10mC.$\frac{4900}{13}$mD.35m

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知函数$f(x)=\frac{lnx}{x}$.
(1)求函数f(x)的单调区间;
(2)设m>0,求f(x)在[m,2m]上的最大值.

查看答案和解析>>

科目: 来源: 题型:填空题

15.记等比数列{an}的前n项积为Tn(n∈N*),已知am-1am+1-2am=0,且T2m-1=128,则m的值为4.

查看答案和解析>>

科目: 来源: 题型:解答题

14.在平面直角坐标系xOy中,已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,其焦点与椭圆上最近点的距离为2-$\sqrt{2}$.
(1)求椭圆的方程;
(2)若A,B分别是椭圆的左右顶点,动点M满足$\overrightarrow{MB}$•$\overrightarrow{AB}$=0,且MA交椭圆于点P.
①求$\overrightarrow{OP}$•$\overrightarrow{OM}$的值;
②设PB与以PM为直径的圆的另一交点为Q,求证:直线MQ过定点.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=$\frac{1}{2}$AB=1,M是PB的中点.
(1)求AC与PB所成的角;
(2)求面AMC与面BMC所成二面角余弦值的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

12.二十世纪50年代,日本熊本县水俣市的许多居民都患了运动失调、四肢麻木等症状,人们把它称为水俣病.经调查发现一家工厂排出的废水中含有甲基汞,使鱼类受到污染.人们长期食用含高浓度甲基汞的鱼类引起汞中毒. 引起世人对食品安全的关注.《中华人民共和国环境保护法》规定食品的汞含量不得超过1.00ppm.罗非鱼是体型较大,生命周期长的食肉鱼,其体内汞含量比其他鱼偏高.现从一批罗非鱼中随机地抽出15条作样本,经检测得各条鱼的汞含量的茎叶图(以小数点前一位数字为茎,小数点后一位数字为叶)如下:
(Ⅰ)若某人员从这15条鱼中,随机地抽出3条,求恰有1条鱼汞含量超标的概率;
(Ⅱ)以此15条鱼的样本数据来估计这批鱼的总体数据.若从这批数量很大的鱼中任选3条鱼,记ξ表示抽到的鱼汞含量超标的条数,求ξ的分布列及Eξ
(Ⅲ)在这15条样本鱼中,任取3条,记η表示抽到的鱼汞含量超标的条数,求η的分布列及Eη.

查看答案和解析>>

科目: 来源: 题型:解答题

11.某班从6名班干部(其中男生4人,女生2人)中,任选3人参加学校的义务劳动.
(1)设所选3人中女生人数为X,求X的分布列及期望;
(2)设“男生甲被选中”为事件A,“女生乙被选中”为事件B,求P(B|A).

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图,长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,点P为棱DD1上一点.
(1)求证:平面PAC⊥平面BDD1B1
(2)若P是棱DD1的中点,求CP与平面BDD1B1所成的角大小.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的一个焦点$F(\sqrt{3},0)$,长轴顶点到点A(0,-2)的距离为2$\sqrt{2}$,O为坐标原点.
(1)求椭圆C的方程;
(2)设过A点的动直线l与椭圆C相交于M,N两点,当△OMN的面积最大时,求l的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知双曲线的中心在原点,焦点在x轴上,离心率为3,焦距为6,
(1)求该双曲线方程;
(2)是否存在过点P(1,1)的直线L与该双曲线交于A,B两点,且点P是线段AB 的中点?若存在,请求出直线L的方程,若不存在,说明理由.

查看答案和解析>>

同步练习册答案