相关习题
 0  234869  234877  234883  234887  234893  234895  234899  234905  234907  234913  234919  234923  234925  234929  234935  234937  234943  234947  234949  234953  234955  234959  234961  234963  234964  234965  234967  234968  234969  234971  234973  234977  234979  234983  234985  234989  234995  234997  235003  235007  235009  235013  235019  235025  235027  235033  235037  235039  235045  235049  235055  235063  266669 

科目: 来源: 题型:解答题

17.已知ABCD为等腰梯形,AD∥BC,AD=2,M,N分别为AD,BC的中点,MN=$\sqrt{3}$,现以AD为边,作两个正三角形△EAD与△PAD,如图,其中平面EAD与平面ABCD共面,平面PAD⊥平面ABCD,Q为PE
的中点.
(Ⅰ)求证:平面QAD∥平面PBC;
(Ⅱ)求证:PE⊥平面PBC;
(Ⅲ)求AE与平面PDE所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:选择题

16.已知f(x)=($\frac{1}{3}$)x-log3x,实数a、b、c满足f(a)•f(b)•f(c)<0,且0<a<b<c,若实数x0是函数f(x)的一个零点,那么下列不等式中,不可能成立的是(  )
A.x0<aB.x0>bC.x0<cD.x0>c

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知函数f(x)=$\frac{1}{3}$x3-(a+2)x2+a(a+4)x+5在区间(-1,2)内单调递减,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

14.已知α∈(0,$\frac{π}{2}$),β∈(0,π),且tanα=$\frac{cosβ}{1-sinβ}$,则(  )
A.2$α+β=\frac{π}{2}$B.3$α+β=\frac{π}{2}$C.2$α-β=\frac{π}{2}$D.3$α-β=\frac{π}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

13.设函数f(x)=2cos2x+$\sqrt{3}$sin2x.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)求函数f(x)的最小值及x的取值集合.

查看答案和解析>>

科目: 来源: 题型:解答题

12.数列{an}满足a1+2a2+22a3+…+2n-1an=4n
(1)求通项an
(2)求数列{an}的前n项和 Sn

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知数列{an}是首项为a,公差为b的等差数列,数列{bn}是首项为b,公比为a的等比数列,且a1<b1<a2<b2<a3,其中a,b,m,n∈N*
(Ⅰ)求a的值;
(Ⅱ)若数列{1+am}与数列{bn}有公共项,将所有公共项按原来顺序排列后构成一个新数列{cn},求数列{cn}的通项公式;
(Ⅲ)设dm=$\frac{a_m}{2m}$,m∈N*,求证:$\frac{1}{{1+{d_1}}}$+$\frac{2}{{(1+{d_1})(1+{d_2})}}$+…+$\frac{n}{{(1+{d_1})(1+{d_2})…(1+{d_n})}}$<2.

查看答案和解析>>

科目: 来源: 题型:选择题

10.已知全集U=R,集合A={x|x2-2x-3>0},B={x|2<x<4},那么集合(∁UA)∩B=(  )
A.{x|-1≤x≤4}B.{x|2<x≤3}C.{x|2≤x<3}D.{x|-1<x<4}

查看答案和解析>>

科目: 来源: 题型:选择题

9.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示“放回5个红球”事件的是(  )
A.ξ=4B.ξ=5C.ξ=6D.ξ≤5

查看答案和解析>>

科目: 来源: 题型:填空题

8.对任意实数x,矩阵$[\begin{array}{l}{x}&{2+m}\\{3-m}&{3}\end{array}]$总存在特征向量,则m的取值范围是[-2,3].

查看答案和解析>>

同步练习册答案