相关习题
 0  234875  234883  234889  234893  234899  234901  234905  234911  234913  234919  234925  234929  234931  234935  234941  234943  234949  234953  234955  234959  234961  234965  234967  234969  234970  234971  234973  234974  234975  234977  234979  234983  234985  234989  234991  234995  235001  235003  235009  235013  235015  235019  235025  235031  235033  235039  235043  235045  235051  235055  235061  235069  266669 

科目: 来源: 题型:解答题

17.如图,已知四边形ABCD满足AD∥BC,AB=AD=CD=$\frac{1}{2}$BC=2,E是BC的中点,将△BAE沿AE折成△B1AE,使面B1AE⊥面AECD,F为棱B1D上一点.
(1)若F为B1D的中点,求证:B1D⊥面AEF;
(2)若B1E⊥AF,求二面角C-AF-B1的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

16.设函数f(x)=lnx-$\frac{1}{2}$ax2-bx
(1)当a=b=$\frac{1}{2}$时,求函数f(x)的单调区间;
(2)设F(x)=f(x)+$\frac{1}{2}$ax2+bx+$\frac{a}{x}$.对任意x∈(0,3],总有F′(x)≤$\frac{1}{2}$成立,求实数a的取值范围;
(3)当a=0,b=-1时,方程f(x)=mx在区间[1,e2]内有唯一实数解,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知函数f(x)=lnx+ax2-(2a+1)x,其中a为常数,且a≠0.
(1)当a=2时,求f(x)的单调区间;
(2)若f(x)在x=1处取得极值,且在(0,e]的最大值为1,求a的值.

查看答案和解析>>

科目: 来源: 题型:选择题

14.设函数f(x)=ex(sinx-cosx)(0≤x≤2015π)的极小值点的个数为(  )
A.1007B.1008C.2015D.2016

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知$f(x)=-\frac{1}{2}a{x^2}+x-ln(1+x)$,其中a>0.
(Ⅰ)若函数f(x)在x=3处取得极值,求a的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)若f(x)在[0,+∞)上的最大值是0,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知函数y=f(x)满足f′(x)=x2-3x-4,则y=f(x+3)的单调减区间为(  )
A.(-4,1)B.(-1,4)C.(-∞,-$\frac{3}{2}$)D.(-∞,$\frac{3}{2}$)

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知函数f(x)=xln x,g(x)=(-x2+ax-3)ex(a为实数).
(1)当a=5时,求函数y=g(x)在x=1处的切线方程;
(2)求f(x)在区间[t,t+2](t>0)上的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知函数f(x)=$\frac{1-x}{ax}$+lnx在(1,+∞)上是增函数,且a>0.
(1)求a的取值范围;
(2)求函数g(x)=ln(1+x)-x在[0,+∞)上的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知F1(-2,0),F2(2,0)分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,且椭圆C过点(-$\sqrt{3}$,1).
(1)求椭圆C的方程;
(2)直线l过椭圆C的右焦点F2且斜率为1与椭圆C交于A,B两点,求弦AB的长;
(3)以第(2)题中的AB为边作一个等边三角形ABP,求点P的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知函数f(x)=lnx-ax2-x(a∈R).
(1)当a=1时,求曲线f(x)在点(1,-2)处的切线方程;
(2)当a≤0时,讨论函数f(x)在其定义域内的单调性;
(3)若函数y=g(x)的图象上存在一点P(x0,g(x0)),使得以P为切点的切线l将其图象分割为c1,c2两部分,且c1,c2分别位于切线l的两侧(点P除外),则称x0为函数y=g(x)的“转点”,问函数y=f(x)(a≥0)是否存在这样的一个“转点”,若存在,求出这个“转点”,若不存在,说明理由.

查看答案和解析>>

同步练习册答案