相关习题
 0  234886  234894  234900  234904  234910  234912  234916  234922  234924  234930  234936  234940  234942  234946  234952  234954  234960  234964  234966  234970  234972  234976  234978  234980  234981  234982  234984  234985  234986  234988  234990  234994  234996  235000  235002  235006  235012  235014  235020  235024  235026  235030  235036  235042  235044  235050  235054  235056  235062  235066  235072  235080  266669 

科目: 来源: 题型:解答题

7.在直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}x=3+2cosα\\ y=2sinα\end{array}\right.$(α为参数).以原点为极点,x轴正半轴为极轴建立极坐标系.直线l的极坐标方程为ρcosθ+ρsinθ+1=0.
(1)写出圆C的普通方程;
(2)将直线l的极坐标方程化为直角坐标方程;
(3)过直线l的任意一点P作直线与圆C交于A,B两点,求|PA|•|PB|的最小值.

查看答案和解析>>

科目: 来源: 题型:选择题

6.直线l:y=kx+1与抛物线y2=4x恰有一个公共点,则实数k的值为(  )
A.0B.1C.-1或0D.0或1

查看答案和解析>>

科目: 来源: 题型:解答题

5.函数f(x)=ax2-(2a+1)x+lnx
(1)当a=1时,求f(x)的单调区间和极值;
(2)设g(x)=ex-x-1,当a<0时,若对任意x1∈(0,+∞),x2∈R,不等式f(x1)≤g(x2)恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

4.已知数列{an}中,an=$\frac{1}{(n+1)^{2}}$,记f(n)=(1-a1)(1-a2)…(1-an),试计算f(1),f(2),f(3)的值,推测f(n)的表达式为f(n)=$\frac{n+2}{2(n+1)}$.

查看答案和解析>>

科目: 来源: 题型:解答题

3.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=t}\\{y=2-t}\end{array}\right.$(t为参数);以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4$\sqrt{2}$sin(θ+$\frac{π}{4}$),直线l与曲线C的交于A,B两点.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)求|AB|的值.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知P为抛物线y2=6x上一点,点P到直线l:3x-4y+26=0的距离为d1
(1)求d1的最小值,并求此时点P的坐标;
(2)若点P到抛物线的距离为d2,求d1+d2的最小值.

查看答案和解析>>

科目: 来源: 题型:填空题

1.方程$\left\{{\begin{array}{l}{x=sinθ+cosθ}\\{4y=1+sin2θ}\end{array}}\right.$(θ为参数)所表示曲线的准线方程是y=-1.

查看答案和解析>>

科目: 来源: 题型:选择题

20.若直线x+y-1=0与抛物线y=2x2交于A,B两点,则点M(1,0)到A,B两点的距离之积为(  )
A.$4\sqrt{2}$B.$2\sqrt{2}$C.4D.2

查看答案和解析>>

科目: 来源: 题型:选择题

19.抛物线y2=12x上与焦点的距离等于9的点的坐标是(  )
A.$(6,6\sqrt{2})$或$(6,-6\sqrt{2})$B.$(4,4\sqrt{3})$或$(4,-4\sqrt{3})$C.(3,6)或(3,-6)D.$(9,6\sqrt{3})$或$(9,-6\sqrt{3})$

查看答案和解析>>

科目: 来源: 题型:选择题

18.椭圆$\frac{x^2}{25}+{y^2}$=1上一点P到焦点F1的距离等于6,则点P到另一个焦点F2的距离为(  )
A.10B.8C.4D.3

查看答案和解析>>

同步练习册答案