相关习题
 0  234909  234917  234923  234927  234933  234935  234939  234945  234947  234953  234959  234963  234965  234969  234975  234977  234983  234987  234989  234993  234995  234999  235001  235003  235004  235005  235007  235008  235009  235011  235013  235017  235019  235023  235025  235029  235035  235037  235043  235047  235049  235053  235059  235065  235067  235073  235077  235079  235085  235089  235095  235103  266669 

科目: 来源: 题型:选择题

8.关于函数f(x)=log${\;}_{\frac{1}{2}}$(1-2x)的单调性,叙述正确的是(  )
A.f(x)在($\frac{1}{2}$,+∞)内是增函数B.f(x)在($\frac{1}{2}$,+∞)内是减函数
C.f(x)在(-∞,$\frac{1}{2}$)内是增函数D.f(x)在(-∞,$\frac{1}{2}$)内是减函数

查看答案和解析>>

科目: 来源: 题型:选择题

7.设f(x)=2x-lnx,x∈(0,e),则f(x)的最小值为(  )
A.2e-1B.1-ln2C.2-$\frac{1}{e}$D.1+ln2

查看答案和解析>>

科目: 来源: 题型:解答题

6.在调查480名男人中有38名患有色盲,520名女人中有6名患有色盲,根据调查数据作出如下的列联表:
色盲不色盲合计
38442480
6514520
合计449561000
利用独立性检验的方法来判断色盲与性别有关?你所得到的结论在什么范围内有效?
注:χ2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(χ2≥10.828)≈0.001,P(χ2≥5.024)≈0.025,P(χ2≥6.635)≈0.01.

查看答案和解析>>

科目: 来源: 题型:解答题

5.在以O为极点,x轴的正半轴为极轴,且单位长度相同的极坐标系中,已知直线l1的极坐标方程为ρsinθ+ρcosθ=1,直线l2的极坐标方程为θ=$\frac{π}{3}$(ρ=R).
(1)将直线l1,l2化为直角坐标方程;
(2)求两直线l1与l2交点的极坐标.

查看答案和解析>>

科目: 来源: 题型:选择题

4.已知直线l的参数方程是$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为p=2cosθ+4sinθ,则直线l被圆C所截得的弦长为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:选择题

3.直线x-y=1截圆$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ∈R)所得弦长为(  )
A.$\sqrt{14}$B.$\sqrt{15}$C.4D.$\sqrt{17}$

查看答案和解析>>

科目: 来源: 题型:解答题

2.根据下列条件,求直线方程(结果写成一般式)
(1)直线l过点(-1,2),且在x,y轴上的截距相等;
(2)直线m过点(2,1),并且到A(1,1)、B(3,5)两点的距离相等.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,在三棱柱ABC-A1B1C1中,A1A⊥平面ABC,∠BAC=90°,F为棱AA1上的动点,A1A=4,AB=AC=2.
(1)当F为A1A的中点,求直线BC与平面BFC1所成角的余弦值;
(2)当$\frac{AF}{{F{A_1}}}$的值为多少时,二面角B-FC1-C的大小是45°.

查看答案和解析>>

科目: 来源: 题型:填空题

20.若函数式f(n)表示n2+1(n∈N*)的各位上的数字之和,
如142+1=197,1+9+7=17所以f(14)=17,
记f1(n)=f(n),f2(n)=f[f1(n)],…,fk+1(n)=f[fk(n)],k∈N*
则f2010(17)=8.

查看答案和解析>>

科目: 来源: 题型:填空题

19.如图,在四面体ABCD中,AB=1,AC=2,AD=3,∠DAB=∠DAC=60°,∠BAC=90°,G为△DBC的重心,则AG=$\frac{\sqrt{23}}{3}$.

查看答案和解析>>

同步练习册答案