相关习题
 0  234911  234919  234925  234929  234935  234937  234941  234947  234949  234955  234961  234965  234967  234971  234977  234979  234985  234989  234991  234995  234997  235001  235003  235005  235006  235007  235009  235010  235011  235013  235015  235019  235021  235025  235027  235031  235037  235039  235045  235049  235051  235055  235061  235067  235069  235075  235079  235081  235087  235091  235097  235105  266669 

科目: 来源: 题型:选择题

8.与⊙C1:x2+(y+2)2=25内切且与⊙C2:x2+(y-2)2=1外切的动圆圆心M的轨迹方程是(  )
A.$\frac{x^2}{9}$+$\frac{y^2}{5}$=1(y≠0)B.$\frac{y^2}{9}$+$\frac{x^2}{5}$=1(x≠0)C.$\frac{x^2}{9}$+$\frac{y^2}{5}$=1(x≠3)D.$\frac{y^2}{9}$+$\frac{x^2}{5}$=1(y≠3)

查看答案和解析>>

科目: 来源: 题型:选择题

7.在极坐标系中,圆心为(2,$\frac{π}{4}$),半径为1的圆的极坐标方程是(  )
A.ρ=8sin(θ-$\frac{π}{4}$)B.ρ=8cos(θ-$\frac{π}{4}$)
C.ρ2-4ρcos(θ-$\frac{π}{4}$)+3=0D.ρ2-4ρsin(θ-$\frac{π}{4}$)+3=0

查看答案和解析>>

科目: 来源: 题型:填空题

6.函数f(x)=$\frac{A}{2}$-$\frac{A}{2}$cos2(ωx+φ),(A>0,ω>0,0<φ<$\frac{π}{2})$的图象过点(1,2),相邻两条对称轴间的距离为2,且f(x)的最大值为2.则f(1)+f(2)+…+f(2016)=2016.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知等差数列{an}的前n项和为Sn,a4+a7=20,对任意的k∈N都有Sk+1=3Sk+k2,数列{bn}的前n项和为Tn=2n+1-2.
(I) 求数列{an}的通项公式;
(Ⅱ)求数列a1bn,a2bn-1,…,an-1b2,anb1各项的和Gn

查看答案和解析>>

科目: 来源: 题型:解答题

4.在平面直角坐标系中内动点P(x,y)到圆F:x2+(y-1)2=1的圆心F的距离比它到直线y=-2的距离小1.
(1)求动点P的轨迹方程;
(2)设点P的轨迹为曲线E,过点F的直线l的斜率为k,直线l交曲线E于A,B两点,交圆F于C,D两点(A,C两点相邻).
①若$\overrightarrow{BF}$=t$\overrightarrow{FA}$,当t∈[1,2]时,求k的取值范围;
②过A,B两点分别作曲线E的切线l1,l2,两切线交于点N,求△ACN与△BDN面积之积的最小值.

查看答案和解析>>

科目: 来源: 题型:填空题

3.图中的三个正方形块中,着色的正方形的个数依次构成一个数列{an},根据着色的规律,则a4=585,数列{an}的通项公式an=$\frac{{8}^{n}-1}{7}$.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知函数f(x)=ex-kx,x∈R
(1)若k=e,试确定函数f(x)的单调区间;
(2)讨论f(x)的极值.

查看答案和解析>>

科目: 来源: 题型:解答题

1.设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.
(1)求a,b的值;
(2)求f(x)在区间[0,3]上的最值.

查看答案和解析>>

科目: 来源: 题型:选择题

20.若函数f(x)=x3+x2+mx+1在R上既有极大值也有极小值,则实数m的取值范围是(  )
A.($\frac{1}{3}$,+∞)B.(-∞,$\frac{1}{3}$)C.[$\frac{1}{3}$,+∞)D.(-∞,$\frac{1}{3}$]

查看答案和解析>>

科目: 来源: 题型:解答题

19.(1)设复数z满足|z|=5,且(3+4i)z是纯虚数,求z.
(2)已知m>0,a,b∈R,求证:($\frac{a+mb}{1+m}$)2≤$\frac{{a}^{2}+m{b}^{2}}{1+m}$.

查看答案和解析>>

同步练习册答案