相关习题
 0  234923  234931  234937  234941  234947  234949  234953  234959  234961  234967  234973  234977  234979  234983  234989  234991  234997  235001  235003  235007  235009  235013  235015  235017  235018  235019  235021  235022  235023  235025  235027  235031  235033  235037  235039  235043  235049  235051  235057  235061  235063  235067  235073  235079  235081  235087  235091  235093  235099  235103  235109  235117  266669 

科目: 来源: 题型:选择题

8.设函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0),在($\frac{π}{6}$,$\frac{π}{2}$)上既无最大值,也无最小值,且-f($\frac{π}{2}$)=f(0)=f($\frac{π}{6}$),则下列结论成立的是 (  )
A.若f(x1)≤f(x)≤f(x2)对?x∈R恒成立,则|x2-x1|min
B.y=f(x)的图象关于点(-$\frac{2π}{3}$,0)中心对称
C.函数f(x)的单调区间为:[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$](k∈Z)
D.函数y=|f(x)|(x∈R)的图象相邻两条对称轴之间的距离是$\frac{π}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

7.已知tanα=-3,tan(α-2β)=1,则tan4β=(  )
A.$\frac{4}{3}$B.$-\frac{4}{3}$C.2D.-2

查看答案和解析>>

科目: 来源: 题型:填空题

6.已知两个等差数列{an},{bn},它们的前n项和分别为Sn,S'n,若$\frac{S_n}{{{{S'}_n}}}=\frac{2n+3}{3n-1}$,则$\frac{a_9}{b_9}$=$\frac{37}{50}$.

查看答案和解析>>

科目: 来源: 题型:填空题

5.已知函数y=loga(2x-1)+2(a>0且a≠1)的图象恒过点P,则点P的坐标是(1,2).

查看答案和解析>>

科目: 来源: 题型:填空题

4.已知角α的终边上有一点P(1,3),则$\frac{sin(π-α)-sin(\frac{π}{2}+α)}{cos(\frac{3π}{2}-α)+2cos(-π+α)}$的值为-$\frac{2}{5}$.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知f(x)=x2-ax+1(a为常数),
(1)若f(x)的图象与x轴有唯一的交点,求a的值;
(2)若f(x)在区间[a-1,a+1]为单调函数,求a的取值范围;
(3)求f(x)在区间[0,2]内的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知函数y=f(x)的定义域为[-1,1],且f(-x)=-f(x),f(0)=1,当a,b∈[-1,1]且a+b≠0,时$\frac{f(a)+f(b)}{a+b}$>0恒成立.
(1)判断f(x)在[-1,1]上的单调性并证明结论;
(2)解不等式f(x+$\frac{1}{2}$)<f($\frac{1}{x-1}$)

查看答案和解析>>

科目: 来源: 题型:解答题

1.某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(Ⅰ)当每辆车的月租金定为4000元时,能租出多少辆车?
(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知直线l的参数方程是,$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t+1}\end{array}\right.$(t是参数),以坐标原点为极点,x轴的正半轴为极轴,建立平面直角坐极坐标系,曲线C的极坐标方程为ρcos2θ=2sinθ,
(1)求曲线C和直线l的普通方程;
(2)直线l与曲线C分别交于A,B两点,求|AB|的长.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知函数f(x)=$\frac{1}{3}$x3-ax+1.
(1)当a=1时,求f(x)在x=0处的切线方程;
(2)若f(x)在[0,1]上的最小值为$\frac{11}{12}$,求a的值.

查看答案和解析>>

同步练习册答案