相关习题
 0  234941  234949  234955  234959  234965  234967  234971  234977  234979  234985  234991  234995  234997  235001  235007  235009  235015  235019  235021  235025  235027  235031  235033  235035  235036  235037  235039  235040  235041  235043  235045  235049  235051  235055  235057  235061  235067  235069  235075  235079  235081  235085  235091  235097  235099  235105  235109  235111  235117  235121  235127  235135  266669 

科目: 来源: 题型:解答题

17.已知数列{an}的首项a1=4,前n项和为Sn,且Sn+1-3Sn-2n-4=0(n∈N*).
(1)求数列{an}的通项公式;
(2)设函数f(x)=anx+an-1x2+an-2x3+…+a1xn,f′(x)是函数f(x)的导函数,令bn=f′(1),求数列{bn}的通项公式.

查看答案和解析>>

科目: 来源: 题型:填空题

16.设a,b∈R,c∈[0,2π),若对任意实数x都有2sin(3x-$\frac{π}{3}$)=asin(bx+c),定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点横坐标为d,则满足条件的有序实数组(a,b,c,d)的组数为28.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知底角为45°的等腰梯形ABCD,底边BC长为7cm,腰长为2$\sqrt{2}$cm,当一条垂直于底边BC(垂足为F)的直线l从左至右移动(与梯形ABCD有公共点)时,直线l把梯形分成两部分,令BF=x,试写出左边部分的面积y与x的函数解析式,并画出大致图象.

查看答案和解析>>

科目: 来源: 题型:解答题

14.设f(x)是定义在(0,+∞)上的增函数,对定义域内的任意x,y都满足f(xy)=f(x)+f(y),
(1)求f(1);
(2)若f(2)=1,解不等式f(x)+f(x-3)≤2.

查看答案和解析>>

科目: 来源: 题型:解答题

13.解不等式a2x+7<a3x-2(a>0,a≠1).

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知函数f(x)=mlnx+(4-2m)x+$\frac{1}{x}$(m∈R).
(1)当m>2时,求函数f(x)的单调区间;
(2)设t,s∈[1,3],不等式|f(t)-f(s)|<(a+ln3)(2-m)-2ln3对任意的m∈(4,6)恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

11.在数列{an}中,a1=2,an+1=3an-2n+1,n∈N*
(Ⅰ)设数列bn=an-n,证明数列{bn}是等比数列;
(Ⅱ)求数列{an}的前n项和Sn
(Ⅲ)当n≥2且n∈N*时,证明不等式Sn+1<3Sn

查看答案和解析>>

科目: 来源: 题型:填空题

10.已知定义在R上的函数f(x)满足f(-x)=-f(x),f(x-3)=f(x),当x∈(0,$\frac{3}{2}$)时,f(x)=ln(x2-x+1),则函数f(x)在区间[0,6]上的零点个数是9.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数f(x)=mx+lnx.
(Ⅰ)若f(x)的最大值为-1,求实数m的值;
(Ⅱ)若f(x)的两个零点为x1,x2且ex1≤x2,求y=(x1-x2)f′(x1+x2)的最小值.(其中e为自然对数的底数,f′(x)是f(x)的导函数)

查看答案和解析>>

科目: 来源: 题型:选择题

8.下列各组函数中表示同一函数的是(  )
A.f(x)=x与g(x)=($\sqrt{x}$)2B.f(x)=x|x|与g(x)=$\left\{\begin{array}{l}{{x}^{2}(x>0)}\\{-{x}^{2}(x<0)}\end{array}\right.$
C.f(x)=|x|与g(x)=$\root{3}{{x}^{3}}$D.f(x)=$\frac{{x}^{2}-1}{x-1}$与g(t)=t+1(t≠1)

查看答案和解析>>

同步练习册答案