相关习题
 0  235027  235035  235041  235045  235051  235053  235057  235063  235065  235071  235077  235081  235083  235087  235093  235095  235101  235105  235107  235111  235113  235117  235119  235121  235122  235123  235125  235126  235127  235129  235131  235135  235137  235141  235143  235147  235153  235155  235161  235165  235167  235171  235177  235183  235185  235191  235195  235197  235203  235207  235213  235221  266669 

科目: 来源: 题型:填空题

3.已知函数f(x)=$\left\{{\begin{array}{l}{sin\frac{πx}{2},x≤0}\\{\frac{1}{6}-{{log}_3}x,x>0}\end{array}}$,则$f[{f({3\sqrt{3}})}]$=-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知公比小于1的等比数列{an}的前n项和为Sn,a1=$\frac{1}{2},7{a_2}=2{S_3}$.
(1)求数列{an}的通项公式;
(2)设bn=log2(1-Sn+1),若$\frac{1}{{{b_1}{b_3}}}+\frac{1}{{{b_3}{b_5}}}+…+\frac{1}{{{b_{2n-1}}{b_{2n+1}}}}=\frac{5}{21}$,求n.

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知等比数列{an}共有10项,其中奇数项之积为2,偶数项之积为64,则其公比是(  )
A.$\frac{3}{2}$B.$\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:填空题

20.若函数y=sin(2x+φ)(0<φ<π)的图象关于直线x=$\frac{π}{3}$对称,则φ的值为$\frac{5π}{6}$.

查看答案和解析>>

科目: 来源: 题型:选择题

19.在△ABC中,a,b,c分别是角A,B,C所对边的边长,若cosC+sinC-$\frac{2}{cosB+sinB}$=0,则$\frac{a+b}{c}$的值是(  )
A.$\sqrt{2}$-1B.$\sqrt{2}$+1C.$\sqrt{3}$+1D.2

查看答案和解析>>

科目: 来源: 题型:选择题

18.函数f(x)=sin(ωx+φ)(其中ω>0且|φ|≤$\frac{π}{2}$)的图象如图所示,为了得到y=sinωx的图象,只需把y=f(x)的图象上所有点(  )
A.向右平移$\frac{π}{6}$个单位长度B.向右平移$\frac{π}{3}$个单位长度
C.向左平移$\frac{π}{6}$个单位长度D.向左平移$\frac{π}{3}$个单位长度

查看答案和解析>>

科目: 来源: 题型:选择题

17.下列命题正确的是(  )
A.命题?x0∈R,x${\;}_{0}^{2}$+1>3x0的否定是:?x∈R,x2+1<3x
B.命题△ABC中,若A>B,则cosA>cosB的否命题是真命题
C.平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是钝角的充要条件是:$\overrightarrow{a}$•$\overrightarrow{b}$<0
D.ω=1是函数f(x)=sinωx-cosωx的最小正周期为2π的充分不必要条件

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知函数f(x)=$\frac{1}{2}a{x^2}$+2x-lnx.
(1)若a=-$\frac{3}{4}$,判断函数f(x)的单调性;
(2)若函数f(x)在定义域内单调递减,求实数a的取值范围;
(3)当a=-$\frac{1}{2}$时,关于x的方程f(x)=$\frac{1}{2}$x-b在[1,4]上恰有两个不相等的实数根,求实数b的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

15.“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称,某市为了了解人们对“一带一路”的认知程度,对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分100分(90分及以上为认知程度高),现从参赛者中抽取了x人,按年龄分成5组(第一组:[20,25),第二组:[25,30),第三组:[30,35),第四组:[35,40),第五组:[40,45]),得到如图所示的频率分布直方图,已知第一组有6人.
(1)求x;
(2)求抽取的x人的年龄的中位数(结果保留整数);
(3)从该市大学生、军人、医务人员、工人、个体户五种人中用分层抽样的方法依次抽取6人,42人,36人,24人,12人,分别记1~5组,从这5个按年龄分的组和5个按职业分的组中每组各选派1人参加知识竞赛代表相应的成绩,年龄组中1~5组的成绩分别为93,96,97,94,90,职业组中1~5组的成绩分别为93,98,94,95,90.
(I)分别求5个年龄组和5个职业组成绩的平均数和方差;
(II)以上述数据为依据,评价5个年龄组和5个职业组对“一带一路”的认知程度,并谈谈你的感想.

查看答案和解析>>

科目: 来源: 题型:填空题

14.设数列{an}为等差数列,且a11=$\frac{3π}{8}$,若f(x)=sin2x+2cos2x,记bn=f(an),则数列{bn}的前21项和为21.

查看答案和解析>>

同步练习册答案