相关习题
 0  235056  235064  235070  235074  235080  235082  235086  235092  235094  235100  235106  235110  235112  235116  235122  235124  235130  235134  235136  235140  235142  235146  235148  235150  235151  235152  235154  235155  235156  235158  235160  235164  235166  235170  235172  235176  235182  235184  235190  235194  235196  235200  235206  235212  235214  235220  235224  235226  235232  235236  235242  235250  266669 

科目: 来源: 题型:填空题

19.在数列{an}及{bn}中,an+1=an+bn+$\sqrt{a_n^2+b_n^2}$,bn+1=an+bn-$\sqrt{a_n^2+b_n^2}$,a1=1,b1=1.设${c_n}={2^n}({\frac{1}{a_n}+\frac{1}{b_n}})$,则数列{cn}的前n项和为2n+2-4.

查看答案和解析>>

科目: 来源: 题型:解答题

18.对于定义域为D的函数y=f(x),如果存在区间[m,n]⊆D,同时满足:
①f(x)在[m,n]上是单调函数;
②当定义域是[m,n]时,f(x)的值域也是[m,n].
则称[m,n]是该函数的“等域区间”.
(1)求证:函数$g(x)=3-\frac{5}{x}$不存在“等域区间”;
(2)已知函数$h(x)=\frac{(2a+2)x-1}{{{a^2}x}}$(a∈R,a≠0)有“等域区间”[m,n],求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知定义在R上的函数$f(x)=\frac{{b-{2^x}}}{{{2^x}+a}}$是奇函数.
(1)求实数a,b的值;
(2)判断f(x)的单调性,并用函数的单调性定义证明你的结论.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知函数f(x)的定义域为(0,4),函数g(x)=f(x+1)的定义域为集合A,集合B={x|a<x<2a-1},若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

15.函数f(x)=lnx+2x-6,若实数x0是函数f(x)的零点,且0<x1<x0,则f(x1)的值(  )
A.恒为正B.等于零C.恒为负D.不小于零

查看答案和解析>>

科目: 来源: 题型:选择题

14.已知集合A到集合B的映射f:(x,y)→(x+2y,2x-y),在映射f下对应集合B中元素(3,1)的A中元素为(  )
A.(1,3)B.(1,1)C.(3,1)D.(5,5)

查看答案和解析>>

科目: 来源: 题型:解答题

13.在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为v(米/单位时间),每单位时间的用氧量为${(\frac{v}{10})^3}+1$(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为$\frac{v}{2}$(米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为y(升).
(1)求y关于v的函数关系式;
(2)若c≤v≤15(c>0),求当下潜速度v取什么值时,总用氧量最少.

查看答案和解析>>

科目: 来源: 题型:填空题

12.若变量x,y满足条件$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y≥-1\end{array}\right.$,则目标函数z=2x+y的最小值为-3.

查看答案和解析>>

科目: 来源: 题型:填空题

11.已知$f(x)=\left\{\begin{array}{l}{2^x},x≤0\\{log_{\frac{1}{2}}}x,x>0\end{array}\right.$,则f[f(4)]=$\frac{1}{4}$.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知函数f(x)=$\frac{lnx}{x+1}$.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若x>0且x≠1,f(x)-$\frac{t}{x}>\frac{lnx}{x-1}$.
(i)求实数t的最大值;
(ii)证明不等式:lnn<$\sum_{i=1}^n{(\frac{1}{i})}-\frac{1}{2}-\frac{1}{2n}$(n∈N*且n≥2).

查看答案和解析>>

同步练习册答案