相关习题
 0  235065  235073  235079  235083  235089  235091  235095  235101  235103  235109  235115  235119  235121  235125  235131  235133  235139  235143  235145  235149  235151  235155  235157  235159  235160  235161  235163  235164  235165  235167  235169  235173  235175  235179  235181  235185  235191  235193  235199  235203  235205  235209  235215  235221  235223  235229  235233  235235  235241  235245  235251  235259  266669 

科目: 来源: 题型:解答题

9.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象与y轴交于点(0,1),它在y轴右侧的得一个最高点和最低点的坐标分别为(x0,2)、(x0+3π,-2).
(1)求f(x)的解析式;
(2)将y=f(x)图象上所有点的横坐标缩短到原来的$\frac{1}{3}$(纵坐标不变),然后将所得图象按向右平移$\frac{π}{3}$,得到函数y=g(x)的图象,写出函数y=g(x)的解析式,并用列表作图的方法画出y=g(x)在长度为一个周期的闭区间上的简图.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知两个定点A(-2,0),B(1,0),动点P满足|PA|=2|PB|.设动点P的轨迹为曲线C,过点(0,-3)的直线l与曲线C交于不同的两点D(x1,y1),E(x2,y2).
(Ⅰ)求曲线C的轨迹方程;
(Ⅱ)求直线l斜率的取值范围;
(Ⅲ)若x1x2+y1y2=3,求|DE|.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知函数f(x)=2x-2-x,定义域为R,函数g(x)=2x+1-22x,定义域为[-1,1].
(Ⅰ)判断函数f(x)的奇偶性并证明;
(Ⅱ)若不等式f[g(x)]+f(-m2+2m+2)≤0对于一切x∈[-1,1]恒成立,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图3,在三棱锥V-ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=$\sqrt{2}$,O,M分别为AB,VA的中点.
(Ⅰ)求证:VB∥平面 M OC;
(Ⅱ)求证:平面MOC⊥平面VAB;
(Ⅲ)求三棱锥A-MOC的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知函数f(x)=ln(2+x)-ln(2-x)的定义域为A,g(x)=x2+2x+m的值域为B,若A⊆B,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

4.一个圆锥的侧面展开图是半径为a的半圆,则此圆锥的体积为$\frac{\sqrt{3}{a}^{3}π}{24}$.

查看答案和解析>>

科目: 来源: 题型:解答题

3.设A,B分别是直线y=$\frac{{2\sqrt{5}}}{5}$x和y=-$\frac{{2\sqrt{5}}}{5}$x上的动点,且|AB|=2$\sqrt{5}$,设O为坐标原点,动点P满足$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$.
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)斜率为1不经过原点O,且与动点P的轨迹相交于C,D两点,M为线段CD的中点,直线CD与直线OM能否垂直?证明你的结论.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,左焦点为F(-1,0),过点D(0,2)且斜率为k的直线l交椭圆于A,B两点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)求k的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

1.抛物线C:y2=2px(p>0)上点M(x,y)到准线的距离为x+2.
(I)求p的值;
(II)设过抛物线C焦点F的直线l交C的于A(x1,y1),B(x2,y2)两点,求y1•y2值.

查看答案和解析>>

科目: 来源: 题型:填空题

20.已知斜率为$\frac{1}{2}$的直线l与曲线y=$\frac{x^2}{4}$-lnx相切,则直线l方程为$\frac{1}{2}$x-y-ln2=0.

查看答案和解析>>

同步练习册答案