相关习题
 0  235092  235100  235106  235110  235116  235118  235122  235128  235130  235136  235142  235146  235148  235152  235158  235160  235166  235170  235172  235176  235178  235182  235184  235186  235187  235188  235190  235191  235192  235194  235196  235200  235202  235206  235208  235212  235218  235220  235226  235230  235232  235236  235242  235248  235250  235256  235260  235262  235268  235272  235278  235286  266669 

科目: 来源: 题型:解答题

4.设正项等比数列{an}的前n项和为Sn,且满足S3=3a3+2a2,a4=8.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列bn=log2an,求{|bn|}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知二项式${({x+\frac{1}{2ax}})^9}$的展开式中x3的系数为$-\frac{21}{2}$,则$\int_1^e{({x+\frac{a}{x}})}$dx的值为(  )
A.$\frac{{{e^2}+1}}{2}$B.$\frac{{{e^2}-3}}{2}$C.$\frac{{{e^2}+3}}{2}$D.$\frac{{{e^2}-5}}{2}$

查看答案和解析>>

科目: 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{2-|x|},{x≤2}\\{(x-2)^{2}},{x>2}\end{array}\right.$,函数g(x)=b-f(2-x),其中b∈R.若函数y=f(x)-g(x)恰有2个零点,则b的取值范围是2<b,b=$\frac{7}{4}$.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知函数f(x)=lnx-mx+m,(m∈R).
(1)讨论函数f(x)的单调性;
(2)若函数f(x)≤0对任意x∈(0,+∞)恒成立,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

20.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足b2+c2-a2=bc,$\overrightarrow{AB}$•$\overrightarrow{BC}$>0,a=$\frac{\sqrt{3}}{2}$,则b+c的取值范围是(  )
A.(1,$\frac{3}{2}$)B.($\frac{\sqrt{3}}{2}$,$\frac{3}{2}$)C.($\frac{1}{2}$,$\frac{3}{2}$)D.($\frac{1}{2}$,$\frac{3}{2}$]

查看答案和解析>>

科目: 来源: 题型:选择题

19.若△ABC的三个内角满足tanAtanBtanC>0,则△ABC是(  )
A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形

查看答案和解析>>

科目: 来源: 题型:解答题

18.在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2cosθ,过点P(2,-1)的直线l:$\left\{{\begin{array}{l}{x=2+tcos{{45}°}}\\{y=-1+tsin{{45}°}}\end{array}}$(t为参数)与曲线C交于M、N两点.
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)求|PM|2+|PN|2的值.

查看答案和解析>>

科目: 来源: 题型:填空题

17.在△ABC中,M是BC的中点,AM=1,点P在AM上,且满足$\overrightarrow{PA}$=-$\overrightarrow{PM}$,则$\overrightarrow{PA}$•($\overrightarrow{PB}+\overrightarrow{PC}$)=-1.

查看答案和解析>>

科目: 来源: 题型:填空题

16.在等差数列{an}中,an=3n-31,记bn=|an|,则数列{bn}的前30项和755.

查看答案和解析>>

科目: 来源: 题型:解答题

15.设函数f(x)=|x+1|-|x-2|
(I)若不等式f(x)≤a的解集为(-∞,$\frac{1}{2}$].求a的值;
(II)若?x∈R.使f(x)<m2-4m,求m的取值范围.

查看答案和解析>>

同步练习册答案