相关习题
 0  235177  235185  235191  235195  235201  235203  235207  235213  235215  235221  235227  235231  235233  235237  235243  235245  235251  235255  235257  235261  235263  235267  235269  235271  235272  235273  235275  235276  235277  235279  235281  235285  235287  235291  235293  235297  235303  235305  235311  235315  235317  235321  235327  235333  235335  235341  235345  235347  235353  235357  235363  235371  266669 

科目: 来源: 题型:选择题

2.解不等式($\frac{1}{2}$)x-x+$\frac{1}{2}$>0时,可构造函数f(x)=($\frac{1}{2}$)x-x,由f(x)在x∈R是减函数,及f(x)>f(1),可得x<1.用类似的方法可求得不等式arcsinx2+arcsinx+x6+x3>0的解集为(  )
A.(0,1]B.(-1,1)C.(-1,1]D.(-1,0)

查看答案和解析>>

科目: 来源: 题型:选择题

1.若矩阵$(\begin{array}{l}{{a}_{11}}&{{a}_{12}}\\{{a}_{21}}&{{a}_{22}}\end{array})$满足:a11,a12,a21,a22∈{0,1},且$|\begin{array}{l}{{a}_{11}}&{{a}_{12}}\\{{a}_{21}}&{{a}_{22}}\end{array}|$=0,则这样的互不相等的矩阵共有(  )
A.2个B.6个C.8个D.10个

查看答案和解析>>

科目: 来源: 题型:选择题

20.如图,在棱长为1的正方体ABCD-A1B1C1D1中,点P在截面A1DB上,则线段AP的最小值等于(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知a,b∈R,则“ab>0“是“$\frac{b}{a}$+$\frac{a}{b}$>2”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分也非必要条件

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知集合M={(x,y)|y=f(x)},若对于任意实数对(x1,y1)∈M,存在(x2,y2)∈M,使x1x2+y1y2=0成立,则称集合M是“垂直对点集”.给出下列四个集合:
①M={(x,y)|y=$\frac{1}{{x}^{2}}$}; 
②M={(x,y)|y=log2x}; 
③M={(x,y)|y=2x-2};
④M={(x,y)|y=sinx+1}.
其中是“垂直对点集”的序号是(  )
A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目: 来源: 题型:选择题

17.如图,有一直角墙角,两边的长度足够长,若P处有一棵树与两墙的距离分别是4m和am(0<a<12),不考虑树的粗细.现用16m长的篱笆,借助墙角围成一个矩形花圃ABCD.设此矩形花圃的最大面积为u,若将这棵树围在矩形花圃内,则函数u=f(a)(单位m2)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:解答题

16.在平面直角坐标系上,有一点列P0,P1,P2,P3,…,Pn-1,Pn,设点Pk的坐标(xk,yk)(k∈N,k≤n),其中xk、yk∈Z,记△xk=xk-xk-1,△yk=yk-yk-1,且满足|△xk|•|△yk|=2(k∈N*,k≤n);
(1)已知点P0(0,1),点P1满足△y1>△x1>0,求P1的坐标;
(2)已知点P0(0,1),△xk=1(k∈N*,k≤n),且{yk}(k∈N,k≤n)是递增数列,点Pn在直线l:y=3x-8上,求n;
(3)若点P0的坐标为(0,0),y2016=100,求x0+x1+x2+…+x2016的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图,椭圆x2+$\frac{y^2}{4}$=1的左、右顶点分别为A、B,双曲线Γ以A、B为顶点,焦距
为2$\sqrt{5}$,点P是Γ上在第一象限内的动点,直线AP与椭圆相交于另一点Q,线段AQ的中点为M,记直线AP的斜率为k,O为坐标原点.
(1)求双曲线Γ的方程;
(2)求点M的纵坐标yM的取值范围;
(3)是否存在定直线l,使得直线BP与直线OM关于直线l对称?若存在,求直线l方程,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

14.如图所示,沿河有A、B两城镇,它们相距20千米,以前,两城镇的污水直接排入河里,现为保护环境,污水需经处理才能排放,两城镇可以单独建污水处理厂,或者联合建污
水处理厂(在两城镇之间或其中一城镇建厂,用管道将污水从各城镇向污水处理厂输送),依据经验公式,建厂的费用为f(m)=25•m0.7(万元),m表示污水流量,铺设管道的费用(包括管道费)$g(x)=3.2\sqrt{x}$(万元),x表示输送污水管道的长度(千米);
已知城镇A和城镇B的污水流量分别为m1=3、m2=5,A、B两城镇连接污水处理厂的管道总长为20千米;假定:经管道运输的污水流量不发生改变,污水经处理后直接排入河中;请解答下列问题(结果精确到0.1)
(1)若在城镇A和城镇B单独建厂,共需多少总费用?
(2)考虑联合建厂可能节约总投资,设城镇A到拟建厂的距离为x千米,求联合建厂的总费用y与x的函数关系
式,并求y的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知$\overrightarrow m=(2\sqrt{3},1)$,$\overrightarrow n=({cos^2}\frac{A}{2},sinA)$,A、B、C是△ABC的内角;
(1)当$A=\frac{π}{2}$时,求$|\overrightarrow n|$的值;
(2)若$C=\frac{2π}{3}$,|AB|=3,当$\overrightarrow{m•}\overrightarrow n$取最大值时,求A的大小及边BC的长.

查看答案和解析>>

同步练习册答案