相关习题
 0  235187  235195  235201  235205  235211  235213  235217  235223  235225  235231  235237  235241  235243  235247  235253  235255  235261  235265  235267  235271  235273  235277  235279  235281  235282  235283  235285  235286  235287  235289  235291  235295  235297  235301  235303  235307  235313  235315  235321  235325  235327  235331  235337  235343  235345  235351  235355  235357  235363  235367  235373  235381  266669 

科目: 来源: 题型:选择题

11.已知直线l与坐标轴不垂直且横、纵截距相等,圆C:(x+1)2+(y-2)2=r2,若直线l和圆C相切,且满足条件的直线l恰好有三条,则圆的半径r的取值集合为(  )
A.$\left\{{1,\sqrt{5}}\right\}$B.$\left\{{\sqrt{5},\frac{{\sqrt{2}}}{2}}\right\}$C.$\left\{{1,\sqrt{5},\frac{{\sqrt{2}}}{2}}\right\}$D.$\left\{{1,2,\sqrt{5},\frac{{\sqrt{2}}}{2}}\right\}$

查看答案和解析>>

科目: 来源: 题型:选择题

10.4个男生4个女生站成一排,要求相邻两人性别不同且男生甲与女生乙相邻,则这样的站法有(  )
A.576种B.504种C.288种D.252种

查看答案和解析>>

科目: 来源: 题型:选择题

9.P是双曲线$\frac{x^2}{9}-\frac{y^2}{16}=1$的右支上一点,M,N分别是圆x2+y2+10x+21=0和x2+y2-10x+24=0上的点,则|PM|-|PN|的最大值为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知函数f(x)=ex(x∈R).
(1)证明:曲线y=f(x)与曲线$y=\frac{1}{2}{x^2}+x+1$有唯一公共点;
(2)设a<b,比较$f(\frac{a+b}{2})$与$\frac{f(b)-f(a)}{b-a}$的大小,并说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

7.已知椭圆和双曲线有共同的焦点F1,F2,P是它们的一个交点,且∠F1PF2=$\frac{π}{3}$,记椭圆和双曲线的离心率分别为e1,e2,则当e1e2取最小值时,e1,e2分别为(  )
A.$\frac{1}{2}$,$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{6}}{2}$C.$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{6}}{2}$D.$\frac{\sqrt{2}}{4}$,$\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

6.抛物线y=-$\frac{1}{4}$x2的焦点与准线的距离为(  )
A.$\frac{1}{16}$B.$\frac{1}{8}$C.4D.2

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知函数f(x)=x2+alnx
(1)当a=-1时,求函数的单调区间和极值
(2)若f(x)在[1,+∞)上是增函数,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

4.抛物线y2=2x与直线y=x-4围成的平面图形面积(  )
A.18B.16C.20D.14

查看答案和解析>>

科目: 来源: 题型:解答题

3.甲、乙两位学生参加数学竞赛培训,在培训期间,他们参加的5次预赛成绩记录如下:
甲:82  82  79  95  87           乙:95  75  80  90  85
(1)用茎叶图表示这两组数据
(2)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选哪位学生参加更合适?说明理由
(3)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知函数$f(x)=\sqrt{3}sinxcosx+{cos^2}x+\frac{3}{2}$.
(1)当$x∈[{-\frac{π}{6},\frac{π}{3}}]$时,求函数y=f(x)的值域;
(2)已知ω>0,函数$g(x)=f({\frac{ωx}{2}+\frac{π}{12}})$,若函数g(x)的最小正周期是π,求ω的值和函数g(x)的增区间.

查看答案和解析>>

同步练习册答案