相关习题
 0  235236  235244  235250  235254  235260  235262  235266  235272  235274  235280  235286  235290  235292  235296  235302  235304  235310  235314  235316  235320  235322  235326  235328  235330  235331  235332  235334  235335  235336  235338  235340  235344  235346  235350  235352  235356  235362  235364  235370  235374  235376  235380  235386  235392  235394  235400  235404  235406  235412  235416  235422  235430  266669 

科目: 来源: 题型:选择题

15.设全集U={1,3,5,7,9},A={1,7},B={1,5,9},则B∩(∁UA)等于(  )
A.{1,5}B.{1,9}C.{5,9}D.{7,9}

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知函数f(x)是定义在{x|x≠0}上的偶函数,且当x>0时,f(x)=log2x.
(1)求出函数f(x)的解析式;
(2)画出函数|f(x)|的图象,并根据图象写出函数|f(x)|的增区间;
(3)设g(x)=ax+1(a>0),对任意${x_1}∈[\frac{1}{2},4]$,存在${x_0}∈[\frac{1}{2},4]$使g(x1)=|f(x0)|,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

13.设等差数列{an}的前n项和为Sn,若a2与a10的等差中项是-2,且a1a6=14    
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设f(n)=$\frac{2{S}_{n}-2{a}_{n}}{n}$(n∈N*),求f(n)最小值及相应的n的值.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知函数$f(x)=\frac{x}{{1+{x^2}}}$,x∈(0,1).
(1)令x1,x2∈(0,1),证明:(x1-x2)•[f(x1)-f(x2)]≥0;
(2)若x∈(0,1)时,恒有$\frac{{3{x^2}-x}}{{1+{x^2}}}≥a({x-\frac{1}{3}})$,求a的值;
(3)若x1,x2,x3都是正数,且x1+x2+x3=1,求$y=\frac{{3x_1^2-{x_1}}}{1+x_1^2}+\frac{{3x_2^2-{x_2}}}{1+x_2^2}+\frac{{3x_3^2-{x_3}}}{1+x_3^2}$的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

11.函数f(x)=loga(x-3a)与函数$g(x)={log_a}\frac{1}{x-a}$(a>0,且a≠1)在给定区间[a+2,a+3]上有意义.
(1)求a的取值范围;
(2)若在给定区间[a+2,a+3]上恒有|f(x)-g(x)|≤1,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

10.设f(x)是定义在R上的函数,若f(0)=2016,且对任意x∈R,满足f(x+2)-f(x)≤3•2x,f(x+6)-f(x)≥63•2x则f(2016)=2015+22016

查看答案和解析>>

科目: 来源: 题型:填空题

9.函数f(x)的定义域为D,若存在闭区间[m,n]⊆D,使得函数f(x)满足以下两个条件:
(1)f(x)在[m,n]上是单调函数;
(2)f(x)在[m,n]上的值域为[2m,2n],则称区间[m,n]为y=f(x)的“倍值区间”.下列函数中存在“倍值区间”的有①③④(填上所有正确的序号)
①f(x)=x2(x≥0)
②f(x)=ex(x∈R)
③$f(x)=\frac{4x}{{{x^2}+1}}({x≥0})$
④$f(x)={log_2}({{2^x}-\frac{1}{8}})$.

查看答案和解析>>

科目: 来源: 题型:填空题

8.幂函数y=xα(α是常数)的图象一定经过点(1,1).

查看答案和解析>>

科目: 来源: 题型:解答题

7.二次函数f(x)的图象顶点为A(1,16),且图象在x轴上截得线段长为8.
(1)求函数f(x)的解析式;
(2)令g(x)=f(x)+(2a-2)x,求函数g(x)在x∈[0,2]的最大值.

查看答案和解析>>

科目: 来源: 题型:选择题

6.偶函数f(x)(x∈R)满足:f(-5)=f(2),且在区间[0,3]与[3,+∞)上分别递减和递增,则不等式x•f(x)<0的解集为(  )
A.(-∞,-5)∪(5,+∞)B.(-5,-2)∪(2,5)C.(-∞,-5)∪(-2,0)D.(-∞,-5)∪(-2,0)∪(2,5)

查看答案和解析>>

同步练习册答案