相关习题
 0  235315  235323  235329  235333  235339  235341  235345  235351  235353  235359  235365  235369  235371  235375  235381  235383  235389  235393  235395  235399  235401  235405  235407  235409  235410  235411  235413  235414  235415  235417  235419  235423  235425  235429  235431  235435  235441  235443  235449  235453  235455  235459  235465  235471  235473  235479  235483  235485  235491  235495  235501  235509  266669 

科目: 来源: 题型:填空题

8.已知数列{an}中,a1=$\frac{1}{3}$,2anan-1=an-an-1,则数列an的通项公式为an=$\frac{1}{5-2n}$.

查看答案和解析>>

科目: 来源: 题型:填空题

7.当0≤x≤2,a<-x2+2x恒成立,则实数a的取值范围是(-∞,0)).

查看答案和解析>>

科目: 来源: 题型:选择题

6.在△ABC中,有
①$\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{BC}$;
②$\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}=\overrightarrow{0}$;
③若($\overrightarrow{AB}+\overrightarrow{AC})•(\overrightarrow{AB}-\overrightarrow{AC})=0$•($\overrightarrow{AB}-\overrightarrow{AC})$=0,则△ABC是等腰三角形;
④若$\overrightarrow{AB}•\overrightarrow{AC}>0$,则△ABC为锐角三角形.
上述命题正确的是(  )
A.①②B.①④C.②③D.②③④

查看答案和解析>>

科目: 来源: 题型:解答题

5.重庆一中开展支教活动,有五名教师被随机的分到49中学、璧山中学、礼嘉中学,且每个中学至少一名教师,
(1)求共有多少种分派方法;(用数字作答)
(2)求璧山中学分到两名教师的概率;
(3)设随机变量X为这五名教师分到璧山中学的人数,求X的分布列和期望.

查看答案和解析>>

科目: 来源: 题型:选择题

4.已知函数f(x)=x4-4x3+10x2-27,则方程f(x)=0在[2,10]上的根(  )
A.有3个B.有2个C.有且只有1个D.不存在

查看答案和解析>>

科目: 来源: 题型:填空题

3.已知100件产品中有10件次品,从中任取3件,则任意取出的3件产品中次品数的数学期望为0.3,方差为0.2645.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,AP=1,AD=$\sqrt{3}$,E为线段PD上一点,记$\frac{PE}{PD}$=λ. 当λ=$\frac{1}{2}$时,二面角D-AE-C的平面角的余弦值为$\frac{2}{3}$.
(1)求AB的长;
(2)当λ=$\frac{1}{3}$时,求直线BP与直线CE所成角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知函数f(x)=$\frac{{x}^{2}}{lnx}$.
(I)求函数f(x)在区间[e${\;}^{\frac{1}{4}}$,e]上的最值;
(II)若g(x)=f(x)+$\frac{4{m}^{2}-4mx}{lnx}$(其中m为常数),且当0<m<$\frac{1}{2}$时,设函数g(x)的3个极值点为a,b,c,且a<b<c,证明:0<2a<b<1<c,并讨论函数g(x)的单调区间(用a,b,c表示单调区间)

查看答案和解析>>

科目: 来源: 题型:选择题

10.设a,b∈R,集合A中含有0,b,$\frac{b}{a}$三个元素,集合B中含有1,a,a+b三个元素,且集合A与集合B相等,则a+2b=(  )
A.1B.0C.-1D.不确定

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数$f(x)={log_4}({{4^x}+1})+kx$是偶函数.
(1)求k的值;
(2)若函数$h(x)={4^{f(x)+\frac{1}{2}x}}+m×{2^x}-1,x∈[{0,{{log}_2}3}]$,是否存在实数m使得h(x)最小值为0,若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案