相关习题
 0  235347  235355  235361  235365  235371  235373  235377  235383  235385  235391  235397  235401  235403  235407  235413  235415  235421  235425  235427  235431  235433  235437  235439  235441  235442  235443  235445  235446  235447  235449  235451  235455  235457  235461  235463  235467  235473  235475  235481  235485  235487  235491  235497  235503  235505  235511  235515  235517  235523  235527  235533  235541  266669 

科目: 来源: 题型:选择题

8.若复数z满足$z+i=\frac{2-i}{i}$,则复数z的模为(  )
A.10B.$\sqrt{10}$C.4D.$\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

7.已知函数$f(x)=\left\{{\begin{array}{l}{x+2}&{({x≤-1})}&{\;}\\{2x}&{({-1<x<2})}&{\;}\\{\frac{x^2}{2}}&{({x≥2})}&{\;}\end{array}}\right.$则$f[{f({-\frac{7}{4}})}]$=(  )
A.$\frac{1}{4}$B.-7C.$\frac{1}{8}$D.$\frac{1}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

6.集合A={x|3≤x≤9},集合B={x|m+1<x<2m+4},m∈R
(I)若m=1,求∁R(A∩B)
(II)若A∪B=A,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

5.某工厂第三年的产量比第一年的产量增加20%,若每年的平均增长率相同(设为x),则以下结论正确的是(  )
A.x=10%B.x<10%
C.x>10%D.x的大小由第一年的产量决定

查看答案和解析>>

科目: 来源: 题型:选择题

4.如果集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是(  )
A.0B.0 或1C.1D.0 或1或-1

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知实数x,y满足$\left\{\begin{array}{l}x-2y-2≥0\\ 2x+y-4≥0\\ x-y-3≤0\end{array}\right.$则x2+(y+2)2的取值范围是(  )
A.[$\frac{65}{9}$,25]B.[$\frac{36}{5}$,25]C.[16,25]D.[9,25]

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知tanα=-3,借助三角函数定义求sinα和cosα.

查看答案和解析>>

科目: 来源: 题型:选择题

1.双曲线$\frac{x^2}{5}-\frac{y^2}{4}=1$的(  )
A.实轴长为$2\sqrt{5}$,虚轴长为4,渐近线方程为$y=±\frac{{2\sqrt{5}}}{5}x$,离心率$e=\frac{{3\sqrt{5}}}{5}$
B.实轴长为$2\sqrt{5}$,虚轴长为4,渐近线方程为$y=±\frac{{\sqrt{5}}}{5}x$,离心率$e=\frac{9}{5}$
C.实轴长为$2\sqrt{5}$,虚轴长为4,渐近线方程为$y=±2\sqrt{5}x$,离心率$e=\frac{6}{5}$
D.实轴长为$2\sqrt{5}$,虚轴长为8,渐近线方程为$y=±\frac{{\sqrt{5}}}{2}x$,离心率$e=\frac{6}{5}$

查看答案和解析>>

科目: 来源: 题型:选择题

20.以下关于函数f(x)=sin2x-cos2x的命题,正确的是(  )
A.函数f(x)在区间$(0,\frac{2}{3}π)$上单调递增
B.直线$x=\frac{π}{8}$是函数y=f(x)图象的一条对称轴
C.点$(\frac{π}{4},0)$是函数y=f(x)图象的一个对称中心
D.将函数y=f(x)的图象向左平移$\frac{π}{8}$个单位,可得到$y=\sqrt{2}sin2x$的图象

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知正方形ADEF所在平面与等腰梯形BCEF所在平面互相垂直,且BC=2BF=2EF=4,G为BC中点.
(1)求证:AB∥平面DFG;
(2)求证:FG⊥平面BDE;
(3)求该多面体体积.

查看答案和解析>>

同步练习册答案