相关习题
 0  235447  235455  235461  235465  235471  235473  235477  235483  235485  235491  235497  235501  235503  235507  235513  235515  235521  235525  235527  235531  235533  235537  235539  235541  235542  235543  235545  235546  235547  235549  235551  235555  235557  235561  235563  235567  235573  235575  235581  235585  235587  235591  235597  235603  235605  235611  235615  235617  235623  235627  235633  235641  266669 

科目: 来源: 题型:解答题

9.如图,三棱锥A-BCD中,BC⊥CD,AD⊥平面BCD,E、F分别为BD、AC的中点.
(I)证明:EF⊥CD;
(II)若BC=CD=AD=1,求点E到平面ABC的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,面积为8的平行四边形ABCD,A为坐标原点,B坐标为(2,-1),C、D均在第一象限.
(I)求直线CD的方程;
(II)若|BC|=$\sqrt{13}$,求点D的横坐标.

查看答案和解析>>

科目: 来源: 题型:填空题

7.四面体ABCD中,AB=2,BC=CD=DB=3,AC=AD=$\sqrt{13}$,则四面体ABCD外接球表面积是16π.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知函数f(x)=Asin(ωx+φ)+m(A>0,ω>0,|φ|<$\frac{π}{2}$)最小正周期为$\frac{π}{2}$,最大值为4,最小值为0,图象的一条对称轴为x=$\frac{π}{3}$
(1)求函数f(x)的解析式
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知tanα=2,求下列各式的值:
(1)$\frac{4sinα-2cosα}{5cosα+3sinα}$;
(2)sinαcosα;
(3)(sinα+cosα)2

查看答案和解析>>

科目: 来源: 题型:选择题

4.如图一半径为3米的水轮,水轮的圆心O距离水面2米,已知水轮每分钟旋转4圈,水轮上的点P到水面的距离y(米)与时间x(秒)满足函数关系y=Asin(ωx+φ)+2则有(  )
A.ω=$\frac{2π}{15}$,A=3B.ω=$\frac{2π}{15}$,A=5C.ω=$\frac{15π}{2}$,A=5D.ω=$\frac{15π}{2}$,A=3

查看答案和解析>>

科目: 来源: 题型:选择题

3.在△ABC中,$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{DC}$,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,且则$\overrightarrow{AD}$=(  )
A.$\frac{4}{3}$$\overrightarrow{a}$-$\frac{1}{3}$$\overrightarrow{b}$B.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$C.$\frac{1}{3}$$\overrightarrow{a}$-$\frac{4}{3}$$\overrightarrow{b}$D.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$

查看答案和解析>>

科目: 来源: 题型:选择题

2.若函数$f(x)=\frac{1}{3}a{x^3}+\frac{1}{2}a{x^2}-2ax+2a+1$的图象经过四个象限,则实数a的取值范围是(  )
A.$-\frac{5}{3}<a<-\frac{3}{16}$B.$-\frac{8}{5}<a<-\frac{3}{16}$C.$-\frac{8}{3}<a<-\frac{1}{16}$D.$-\frac{6}{5}<a<-\frac{3}{16}$

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,边长为2的正方形ABCD所在平面与三角形CDE所在平面相交于CD,AE⊥平面CDE,且AE=1.
(1)求证:AB∥平面CDE;
(2)求证:DE⊥平面ABE;
(3)求三棱锥B-ADE的体积.

查看答案和解析>>

科目: 来源: 题型:填空题

20.已知直线l:kx+y+1=0(k∈R),则原点到这条直线距离的最大值为1.

查看答案和解析>>

同步练习册答案