相关习题
 0  235500  235508  235514  235518  235524  235526  235530  235536  235538  235544  235550  235554  235556  235560  235566  235568  235574  235578  235580  235584  235586  235590  235592  235594  235595  235596  235598  235599  235600  235602  235604  235608  235610  235614  235616  235620  235626  235628  235634  235638  235640  235644  235650  235656  235658  235664  235668  235670  235676  235680  235686  235694  266669 

科目: 来源: 题型:选择题

11.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长五尺,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”根据上题的已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为(  )
A.6 斤B.9 斤C.9.5斤D.12 斤

查看答案和解析>>

科目: 来源: 题型:选择题

10.已知△ABC的面积为$\sqrt{3}$,且∠C=30°,BC=2$\sqrt{3}$,则AB等于(  )
A.1B.$\sqrt{3}$C.2D.2$\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

9.在{1,3,5}和{2,4}两个集合中各取一个数组成一个两位数,则这个数能被4整除的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{1}{6}$D.$\frac{1}{4}$

查看答案和解析>>

科目: 来源: 题型:解答题

8.设n∈N*,n≥3,k∈N*
(1)求值:
①kCnk-nCn-1k-1
②k2Cnk-n(n-1)Cn-2k-2-nCn-1k-1(k≥2);
(2)化简:12Cn0+22Cn1+32Cn2+…+(k+1)2Cnk+…+(n+1)2Cnn

查看答案和解析>>

科目: 来源: 题型:解答题

7.某年级星期一至星期五每天下午排3节课,每天下午随机选择1节作为综合实践课(上午不排该课程),张老师与王老师分别任教甲、乙两个班的综合实践课程.
(1)求这两个班“在星期一不同时上综合实践课”的概率;
(2)设这两个班“在一周中同时上综合实践课的节数”为X,求X的概率分布表与数学期望E(X).

查看答案和解析>>

科目: 来源: 题型:解答题

6.若实数x,y,z满足x+2y+z=1,求x2+y2+z2的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

5.在平面直角坐标系xOy中,已知直线$l:\left\{\begin{array}{l}x=\frac{3}{5}t\\ y=\frac{4}{5}t\end{array}\right.(t$为参数).现以坐标原点O为极点,以x轴非负半轴为极轴建立极坐标系,设圆C的极坐标方程为ρ=2cosθ,直线l与圆C交于A,B两点,求弦AB的长.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图,AB是半圆O的直径,点P为半圆O外一点,PA,PB分别交半圆O于点D,C.若AD=2,PD=4,PC=3,求BD的长.

查看答案和解析>>

科目: 来源: 题型:解答题

3.若存在常数k(k∈N*,k≥2)、q、d,使得无穷数列{an}满足${a_{n+1}}=\left\{\begin{array}{l}{a_n}+d,\frac{n}{k}∉{N^*}\\ q{a_n},\frac{n}{k}∈{N^*}\end{array}\right.$则称数列{an}为“段比差数列”,其中常数k、q、d分别叫做段长、段比、段差.设数列{bn}为“段比差数列”.
(1)若{bn}的首项、段长、段比、段差分别为1、3、q、3.
①当q=0时,求b2016
②当q=1时,设{bn}的前3n项和为S3n,若不等式${S_{3n}}≤λ•{3^{n-1}}$对n∈N*恒成立,求实数λ的取值范围;
(2)设{bn}为等比数列,且首项为b,试写出所有满足条件的{bn},并说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图所示,某街道居委会拟在EF地段的居民楼正南方向的空白地段AE上建一个活动中心,其中AE=30米.活动中心东西走向,与居民楼平行.从东向西看活动中心的截面图的下部分是长方形ABCD,上部分是以DC为直径的半圆.为了保证居民楼住户的采光要求,活动中心在与半圆相切的太阳光线照射下落在居民楼上的影长GE不超过2.5米,其中该太阳光线与水平线的夹角θ满足$tanθ=\frac{3}{4}$.
(1)若设计AB=18米,AD=6米,问能否保证上述采光要求?
(2)在保证上述采光要求的前提下,如何设计AB与AD的长度,可使得活动中心的截面面积最大?(注:计算中π取3)

查看答案和解析>>

同步练习册答案