相关习题
 0  235568  235576  235582  235586  235592  235594  235598  235604  235606  235612  235618  235622  235624  235628  235634  235636  235642  235646  235648  235652  235654  235658  235660  235662  235663  235664  235666  235667  235668  235670  235672  235676  235678  235682  235684  235688  235694  235696  235702  235706  235708  235712  235718  235724  235726  235732  235736  235738  235744  235748  235754  235762  266669 

科目: 来源: 题型:选择题

3.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右顶点为A,左焦点为F,过F作垂直于x轴的直线与双曲线相交于B、C两点,若△ABC为直角三角形,则双曲线的离心率为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知点A($\sqrt{3}$,0)和P($\sqrt{3}$,t)(t∈R),若曲线x2+y2=3上存在点B使∠APB=60°,则t的最大值为(  )
A.$\sqrt{3}$B.2C.1+$\sqrt{3}$D.3

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知直线x=1上的点P到直线x-y=0的距离为$\sqrt{2}$,则点P的坐标为(  )
A.(1,-1)B.(1,3)C.(1,-2)或(1,2)D.(1,-1)或(1,3)

查看答案和解析>>

科目: 来源: 题型:选择题

20.在两坐标轴上截距均为m(m∈R)的直线l1与直线l2:2x+2y-3=0的距离为$\sqrt{2}$,则m=(  )
A.$\frac{7}{2}$B.7C.-1或7D.-$\frac{1}{2}$或$\frac{7}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知半径为$\sqrt{2}$的圆C,其圆心在射线y=-2x(x<0)上,且与直线x+y+1=0相切.
(1)求圆C的方程;
(2)从圆C外一点P(x0,y0))向圆引切线PM,M为切点,O为坐标原点,且有|PM|=|PO|,求△PMC面积的最小值,并求此时点P的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

18.如图,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,CAB=90°,AB=AC=2,AA1=$\sqrt{3}$,M为BC的中点,P为侧棱BB1上的动点.
(1)求证:平面APM⊥平面BB1C1C;
(2)试判断直线BC1与AP是否能够垂直.若能垂直,求PB的长;若不能垂直,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知函数f(x)=2x+2ax(a为实数),且f(1)=$\frac{5}{2}$.
(1)求函数f(x)的解析式;
(2)判断函数f(x)的奇偶性并证明;
(3)判断函数f(x)在区间[0,+∞)的单调性,并用定义证明.

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图,四棱锥P-ABCD的底面是边长为1的正方形,侧棱PA⊥底面ABCD,且PA=2,E是侧棱PA的中点.
(1)求证:PC∥平面BDE
(2)求三棱锥P-CED的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知椭圆C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的短轴长为2$\sqrt{3}$,离心率为$\frac{1}{2}$,点F为其在y轴正半轴上的焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若一动圆过点F,且与直线y=-1相切,求动圆圆心轨迹C1的方程;
(Ⅲ)过F作互相垂直的两条直线l1,l2,其中l1交曲线C1于M、N两点,l2交椭圆C于P、Q两点,求四边形PMQN面积的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知函数f(x)=$\frac{1}{2}$ax2+lnx,a∈R.
(Ⅰ)若曲线y=f(x)与直线y=3x+b在x=1处相切,求实数a,b的值;
(Ⅱ)求函数y=f(x)的单调区间;
(Ⅲ)若a=0时,函数h(x)=f(x)+bx有两个不同的零点,求实数b的取值范围.

查看答案和解析>>

同步练习册答案