相关习题
 0  235572  235580  235586  235590  235596  235598  235602  235608  235610  235616  235622  235626  235628  235632  235638  235640  235646  235650  235652  235656  235658  235662  235664  235666  235667  235668  235670  235671  235672  235674  235676  235680  235682  235686  235688  235692  235698  235700  235706  235710  235712  235716  235722  235728  235730  235736  235740  235742  235748  235752  235758  235766  266669 

科目: 来源: 题型:选择题

3.若变量x,y满足$\left\{\begin{array}{l}{x≤0}\\{y≥0}\\{x-y+1≥0}\end{array}\right.$,则z=x+2y的最大值为(  )
A.-2B.0C.1D.2

查看答案和解析>>

科目: 来源: 题型:选择题

2.设a,b∈R,则“a+b≥4”是“a≥2且b≥2”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知M={x|0<x<2},N={x|y=lg(x-1)},则M∩N=(  )
A.{x|0<x<2}B.{x|1<x<2}C.{x|x>0}D.{x|x≥1}

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知f(x)=|x-a|+|x-3|.
(1)当a=1时,求f(x)的最小值;
(2)若不等式f(x)≤3的解集非空,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

19.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=2+cosα\\ y=4+sinα\end{array}\right.$,以坐标原点O为极点,x轴的正半轴为极轴的坐标系中,曲线C2的方程为ρ(cosθ-msinθ)+1=0(m为常数).
(1)求曲线C1,C2的直角坐标方程;
(2)设P点是C1上到x轴距离最小的点,当C2过点P时,求m的值.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知函数f(x)=ex-$\frac{a}{x}$,a,f(x)为实数.
(1)当a>0时,求函数f(x)的单调区间;
(2)若f(x)在(0,+∞)上存在极值点,且极值大于ln4+2,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图,P是直线x=4上一动点,以P为圆心的圆Γ经定点B(1,0),直线l是圆Γ在点B处的切线,过A(-1,0)作圆Γ的两条切线分别与l交于E,F两点.
(1)求证:|EA|+|EB|为定值;
(2)设直线l交直线x=4于点Q,证明:|EB|•|FQ|=|BF•|EQ|.

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图,以A,B,C,D,E为顶点的六面体中,△ABC和△ABD均为正三角形,且平面ABC⊥平面ABD,EC⊥面ABC,EC=$\frac{{\sqrt{3}}}{2}$,AB=2.
(1)求证:DE⊥AB;
(2)求二面角D-BE-A的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

15.张老师 上班,有路线①与路线②两条路线可供选择.
路线①:沿途有A,B两处独立运行的交通信号灯,且两处遇到绿灯的概率依次为$\frac{1}{2},\frac{2}{3}$,若A处遇到红灯或黄灯,则导致延误时间2分钟;若B处遇到红灯或黄灯,则导致延误时间3分钟;若两处都遇到绿灯,则全程所花时间为20分钟.
路线②:沿途有a,b两处独立运行的交通信号灯,且两处遇到绿灯的概率依次为$\frac{3}{4}\frac{2}{5}$,若a处遇到红灯或黄灯,则导致延误时间8分钟;若b处遇到红灯或黄灯,则导致延误时间5分钟;若两处都遇绿灯,则全程所化时间为15分钟.
(1)若张老师选择路线①,求他20分钟能到校的概率;
(2)为使张老师日常上班途中所花时间较少,你建议张老师选择哪条路线?说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知数列{an}为等差数列,其中a2+a3=8,a5=3a2
(1)求数列{an}的通项公式;
(2)数列{bn}中,b1=1,b2=2,从数列{an}中取出第bn项记为cn,若{cn}是等比数列,求{bn}的前n项和.

查看答案和解析>>

同步练习册答案