相关习题
 0  235574  235582  235588  235592  235598  235600  235604  235610  235612  235618  235624  235628  235630  235634  235640  235642  235648  235652  235654  235658  235660  235664  235666  235668  235669  235670  235672  235673  235674  235676  235678  235682  235684  235688  235690  235694  235700  235702  235708  235712  235714  235718  235724  235730  235732  235738  235742  235744  235750  235754  235760  235768  266669 

科目: 来源: 题型:解答题

3.已知函数$f(x)=\frac{lnx}{x},g(x)=x({lnx-\frac{ax}{2}-1})$.
(1)求y=f(x)的最大值;
(2)当$a∈[{0,\frac{1}{e}}]$时,函数y=g(x),(x∈(0,e])有最小值. 记g(x)的最小值为h(a),求函
数h(a)的值域.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知抛物线C:x2=2py(p>0),圆O:x2+y2=1.
(1)若抛物线C的焦点F在圆上,且A为 C和圆 O的一个交点,求|AF|;
(2)若直线l与抛物线C和圆O分别相切于点M,N,求|MN|的最小值及相应p的值.

查看答案和解析>>

科目: 来源: 题型:解答题

1.在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠ABC=60°,PB=PC=PD.
(1)证明:PA⊥平面ABCD;
(2)若PA=2,求二面角A-PD-B的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

20.在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为1:3,且成绩分布在[40,100],分数在80以上(含80)的同学获奖.按文理科用分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图(见图).
(1)填写下面的2×2列联表,能否有超过95%的把握认为“获奖与学生的文理科有关”?
(2)将上述调査所得的频率视为概率,现从参赛学生中,任意抽取3名学生,记“获奖”学生人数为X,求X的分布列及数学期望.
文科生理科生合计
获奖5
不获奖
合计200
附表及公式:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目: 来源: 题型:解答题

19.在△ABC中,角A、B、C所对的边分别为a、b、c.已知acosAcosB-bsin2A-ccosA=2bcosB.
(1)求B;
(2)若$b=\sqrt{7}a,{S_{△ABC}}=2\sqrt{3}$,求a.

查看答案和解析>>

科目: 来源: 题型:解答题

18.在平面直角坐标系xOy中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,且离心率是$\frac{1}{2}$,过坐标原点O的任一直线交椭圆C于M、N两点,且|NF2|+|MF2|=4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l:y=kx+m与椭圆C交于不同的两点A、B,且与圆x2+y2=1相切,
(i)求证:m2=k2+1;
(ii)求$\overrightarrow{OA}$•$\overrightarrow{OB}$的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知函数f(x)=ax+lnx,a∈R.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若g(x)=$\sqrt{x}$[f(x)-ax],且对任意x≥1,2$\sqrt{x}$•g′(x)-1≥$\frac{λx}{x+1}$恒成立,求实数λ的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

16.2016年双十一期间,某电子产品销售商促销某种电子产品,该产品的成本为2元/件,通过市场分析,双十一期间该电子产品销售量y(单位:千件)与销售价格x(单位:元)之间满足关系式:y=$\frac{a}{x-2}$+2x2-35x+170(其中2<x<8,a为常数),且已知当销售价格为3元/件时,该电子产品销售量为89千件.
(Ⅰ)求实数a的值及双十一期间销售该电子产品获得的总利润L(x);
(Ⅱ)销售价格x为多少时,所获得的总利润L(x)最大?并求出总利润L(x)的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图所示,四棱锥P-ABCD的底面为直角梯形,AB⊥AD,CD⊥AD,CD=2AB.点E是PC的中点.
(Ⅰ)求证:BE∥平面PAD;
(Ⅱ)已知平面PCD⊥底面ABCD,且PC=DC.在棱PD上是否存在点F,使CF⊥PA?请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

14.设f(x)=sinxcosx+sin2x-$\frac{1}{2}$.
(Ⅰ)求f(x)的单调递减区间;
(Ⅱ)把y=f(x)的图象向左平移$\frac{π}{24}$个单位,得到函数y=g(x)的图象,求y=g(x)在区间[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

同步练习册答案