相关习题
 0  235582  235590  235596  235600  235606  235608  235612  235618  235620  235626  235632  235636  235638  235642  235648  235650  235656  235660  235662  235666  235668  235672  235674  235676  235677  235678  235680  235681  235682  235684  235686  235690  235692  235696  235698  235702  235708  235710  235716  235720  235722  235726  235732  235738  235740  235746  235750  235752  235758  235762  235768  235776  266669 

科目: 来源: 题型:选择题

3.已知集合A={x|(x+2)(x-3)<0},则A∩N(N为自然数集)为(  )
A.(-∞,-2)∪(3,+∞)B.(2,3)C.{0,1,2}D.{1,2}

查看答案和解析>>

科目: 来源: 题型:解答题

2.设函数f(x)=ex-ax2+1,曲线y=f(x)在x=1处的切线方程为y=bx+2.
(1)求a,b的值;
(2)若方程F(x)=f(x)-mx有两个极值点x1,x2(x1<x2),x0是x1与x2的等差中项;
(i)求实数m的取值范围;
(ii)求证:f′(x0)<0 ( f′(x)为f(x)的导函数).

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知椭圆Cn:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=n(a>b>1,n∈N*),F1,F2是椭圆C4的焦点,A(2,$\sqrt{2}$)是椭圆C4上一点,且$\overrightarrow{A{F}_{2}}$?$\overrightarrow{{F}_{1}{F}_{2}}$=0;
(1)求Cn的离心率并求出C1的方程;
(2)P为椭圆C2上任意一点,直线PF1交椭圆C4于点E,F,直线PF2交椭圆C4于点M,N,设直线PF1的斜率为k1,直线PF2的斜率为k2
(i)求证:k1k2=-$\frac{1}{2}$    
(ii)求|MN|?|EF|的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

20.自主招生,是高校选拔录取工作改革的重要环节,通过高考自主招生笔试和面试之后,可以得到相应的高考降分政策;某高中高一学生共有1000人,其中城填初中毕业生750名(称为“城填生“),农村初中毕业生250人(称为“农村生“);为了摸清学生是否愿意参加自主招生,以便安排自主招生培训,拟采用分层抽样的方法抽取100名学生进行调查;
(1)试完成下列2×2联表,并分析是否有95%以上的把握说“是否愿意参加自主招生“与生源有关.
愿意参加不愿意参加合计
城填生502575
农村生101525
合计6040100
(2)现对愿意参加自主招生的同学组织摸底考试,考试题共有5道题,每题20分,对于这5道题,考生“高富帅”完全会答的有3道,不完全会的有2道,不完全会的每道题她得分S的概率满足:SKIPIF 1<0,假设解答各题之间没有影响.
①对于一道不完全会的题,求“高富帅”得分的均值E(s);
②试求“高富帅”在本次摸底考试中总得分的数学期望.
参考数据:
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)

查看答案和解析>>

科目: 来源: 题型:解答题

19.如图,四边形ABCD为矩形,PB=20,BC=30,PA⊥平面ABCD.
(1)证明:平面PCD⊥平面PAD;
(2)当AB的长为多少时,面PAB与面PCD所成的二面角为60°?请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

18.等比数列{an}的各项均为正数,且a1+2a2=1,a32=4a2a6
(1)求数列{an}的通项公式;
(2)设bn+2=3log2$\frac{1}{{a}_{n}}$,求数列{anbn}的前n项和.

查看答案和解析>>

科目: 来源: 题型:填空题

17.若二次函数f(x)=x2+1的图象与曲线C:g(x)=aex+1(a>0)存在公共切线,则实数a的取值范围为(0,$\frac{4}{{e}^{2}}$].

查看答案和解析>>

科目: 来源: 题型:填空题

16.在△ABC中,角A,B,C所对的边分别为a,b,c,且2bcosC-3ccosB=a,则tan(B-C)的最大值为$\frac{3}{4}$.

查看答案和解析>>

科目: 来源: 题型:填空题

15.已知α,β是两个不同的平面,l,m是两条不同直线,l⊥α,m?β.给出下列命题:
①α∥β⇒l⊥m;②α⊥β⇒l∥m;③m∥α⇒l⊥β;  ④l⊥β⇒m∥α.
其中正确的命题是①④. (填写所有正确命题的序号).

查看答案和解析>>

科目: 来源: 题型:填空题

14.若a=2,则(1+ax)5的展开式中x3项的系数为80.

查看答案和解析>>

同步练习册答案