相关习题
 0  235589  235597  235603  235607  235613  235615  235619  235625  235627  235633  235639  235643  235645  235649  235655  235657  235663  235667  235669  235673  235675  235679  235681  235683  235684  235685  235687  235688  235689  235691  235693  235697  235699  235703  235705  235709  235715  235717  235723  235727  235729  235733  235739  235745  235747  235753  235757  235759  235765  235769  235775  235783  266669 

科目: 来源: 题型:选择题

3.曲线y=$\frac{x}{2x-1}$在点(1,1)处的切线方程为(  )
A.x-y-2=0B.x+y-2=0C.x+4y-5=0D.x-4y-5=0

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,连接椭圆的四个顶点得到的菱形的面积为4$\sqrt{3}$.
(1)求椭圆C的方程;
(2)已知O为坐标原点,点P是圆C1:x2+y2=$\frac{5}{3}$上的点,过P作圆的切线交椭圆于M,N两点,求△OMN面积的最大值,并求出面积最大值时切线的斜率.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知倾斜角为60°的直线l过点(0,-2$\sqrt{3}$)和椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点,且椭圆的离心率为$\frac{\sqrt{6}}{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过(-3,0)点的直线l与椭圆相交于A,B两点,若以线段A,B为直径的圆过椭圆的左焦点,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

10.不等式选讲已知函数f(x)=|2x+a|-a
(1)当a=2时,求不等式f(x)≤6的解集;
(2)设函数g(x)=|2x-1|,当x∈R时f(x)+g(x)≥3,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数f(x)=ax+lnx-1,其中a为常数
(1)当$a∈(-∞,-\frac{1}{e})$时,若f(x)在区间(0,e)上的最大值为-3,求a的值;
(2)当$a=-\frac{1}{e}$时,若$g(x)=|{f(x)}|-\frac{lnx}{x}-\frac{b}{2}$存在零点,求实数b的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>0,b>0)$的右焦点F(1,0),长轴的左、右端点分别为A1,A2;且$\overrightarrow{F{A_1}}•\overrightarrow{F{A_2}}=-1$.
(1)求椭圆E的方程;
(2)已知点B(0,-1),经过点(1,1)且斜率为k的直线与椭圆E交于不同的两P、Q点(均异于点B),证明:直线BP与BQ的斜率之和为定值.

查看答案和解析>>

科目: 来源: 题型:解答题

7.设函数$f(x)=cosxsinx-{sin^2}x-\frac{1}{2}$
(1)求函数f(x)的最小正周期和单调递增区间;
(2)若$f(α)=\frac{{3\sqrt{2}}}{10}-1$,且$α∈(\frac{π}{8},\frac{3π}{8})$,求$f(α-\frac{π}{8})的值$.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知数列{an}满足:$a_n^2={a_{n-1}}•{a_{n+1}}(n≥2)$且a2+2a1=4,$a_3^2={a_5}$.
(1)求数列{an}的通项公式;
(2)若bn=nan,求数列{bn}的前n项和Sn

查看答案和解析>>

科目: 来源: 题型:填空题

5.已知四棱锥P-ABCD中,平面PAD⊥平面ABCD,其中四边形ABCD为正方形,△PAD为等边三角形,AB=2,则四棱锥P-ABCD外接球的体积为$\frac{{28\sqrt{21}}}{27}π$.

查看答案和解析>>

科目: 来源: 题型:填空题

4.已知函数$f(x)={e^x}+\frac{1}{e^x}$,则使得f(2x)>f(x+3)成立的x的取值范围是(-∞,-1)∪(3,+∞).

查看答案和解析>>

同步练习册答案