相关习题
 0  235600  235608  235614  235618  235624  235626  235630  235636  235638  235644  235650  235654  235656  235660  235666  235668  235674  235678  235680  235684  235686  235690  235692  235694  235695  235696  235698  235699  235700  235702  235704  235708  235710  235714  235716  235720  235726  235728  235734  235738  235740  235744  235750  235756  235758  235764  235768  235770  235776  235780  235786  235794  266669 

科目: 来源: 题型:填空题

13.若函数f(x)=x2+$\frac{a-1}{x}$为偶函数,则实数a=1.

查看答案和解析>>

科目: 来源: 题型:填空题

12.若x>0,则函数f(x)=$\frac{2}{x}$+x的最小值为2$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

11.已知A={x|x≤7},B={x|x>2},则A∩B={x|2<x≤7}.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知圆C过点$A(\frac{3}{4},\;0)$,且与直线$l:\;x=-\frac{3}{4}$相切,
(I)求圆心C的轨迹方程;
(II) O为原点,圆心C的轨迹上两点M、N(不同于点O)满足$\overrightarrow{OM}•\overrightarrow{ON}=0$,已知$\overrightarrow{OP}=\frac{1}{3}\overrightarrow{OM}$,$\overrightarrow{OQ}=\frac{1}{3}\overrightarrow{ON}$,证明直线PQ过定点,并求出该定点坐标和△APQ面积的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

9.某次数学测验后,数学老师统计了本班学生对选做题的选做情况,得到如表数据:(单位:人)
坐标系与参数方程不等式选讲合计
男同学22830
女同学81220             
合计302050
(I)请完成题中的2×2列联表;并根据表中的数据判断,是否有超过97.5%的把握认为选做“坐标系与参数方程”或“不等式选讲”与性别有关?
(II)经过多次测试后,甲同学发现自己解答一道“坐标系与参数方程”所用的时间为区间[5,7]内一个随机值(单位:分钟),解答一道“不等式选讲”所用的时间为区间[6,8]内一个随机值(单位:分钟),试求甲在考试中选做“坐标系与参数方程”比选做“不等式选讲”所用时间更长的概率.
附表及公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,在四棱锥P-ABCD中,O∈AD,AD∥BC,AB⊥AD,AO=AB=BC=1,PO=$\sqrt{2}$,$PC=\sqrt{3}$.
(I)证明:平面POC⊥平面PAD;
(II)若CD=$\sqrt{2}$,三棱锥P-ABD与C-PBD的体积分别为V1、V2,求证V1=2V2

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知递增数列{an}的前n项和为Sn,且满足$2{S_n}=a_n^2+n$.
(I)求an
(II)设${b_n}={a_{n+1}}•{2^n}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:填空题

6.直线l:x+4y=2与圆C:x2+y2=1交于A、B两点,O为坐标原点,若直线OA、OB的倾斜角分别为α、β,则cosα+cosβ=$\frac{4}{17}$.

查看答案和解析>>

科目: 来源: 题型:解答题

5.2016年年底,某商业集团根据相关评分标准,对所属20家商业连锁店进行了年度考核评估,并依据考核评估得分(最低分60分,最高分100分)将这些连锁店分别评定为A,B,C,D四个类型,其考核评估标准如表:
评估得分[60,70)[70,80)[80,90)[90,100]
评分类型DCBA
考核评估后,对各连锁店的评估分数进行统计分析,得其频率分布直方图如下:
(Ⅰ)评分类型为A的商业连锁店有多少家;
(Ⅱ)现从评分类型为A,D的所有商业连锁店中随机抽取两家做分析,求这两家来自同一评分类型的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知数列{an}的通项公式为${a_n}=6n+5(n∈{N^*})$,数列{bn}是等差数列,且an=bn+bn+1
(Ⅰ)求数列{an}的前n项和;
(Ⅱ)求数列{bn}的通项公式.

查看答案和解析>>

同步练习册答案