相关习题
 0  235602  235610  235616  235620  235626  235628  235632  235638  235640  235646  235652  235656  235658  235662  235668  235670  235676  235680  235682  235686  235688  235692  235694  235696  235697  235698  235700  235701  235702  235704  235706  235710  235712  235716  235718  235722  235728  235730  235736  235740  235742  235746  235752  235758  235760  235766  235770  235772  235778  235782  235788  235796  266669 

科目: 来源: 题型:解答题

13.已知t为实数,函数f(x)=2loga(2x+t-2),g(x)=logax,其中0<a<1.
(1)若函数y=g(ax+1)-kx是偶函数,求实数k的值;
(2)当x∈[1,4]时,f(x)的图象始终在g(x)的图象的下方,求t的取值范围;
(3)设t=4,当x∈[m,n]时,函数y=|f(x)|的值域为[0,2],若n-m的最小值为$\frac{1}{6}$,求实数a的值.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知函数f(x)=($\frac{1}{2}$)x-2x
(1)若f(x)=$\frac{15}{4}$,求x的值;
(2)若不等式f(2m-mcosθ)+f(-1-cosθ)<f(0)对所有θ∈[0,$\frac{π}{2}$]都成立,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

11.某机构通过对某企业2016年的生产经营情况的调查,得到每月利润y(单位:万元)与相应月份数x的部分数据如表:
 x 1 4 7 12
 y 229 244 241 196
(1)根据如表数据,请从下列三个函数中选取一个恰当的函数描述y与x的变化关系,并说明理由,y=ax3+b,y=-x2+ax+b,y=a•bx
(2)利用(1)中选择的函数,估计月利润最大的是第几个月,并求出该月的利润.

查看答案和解析>>

科目: 来源: 题型:解答题

10.设α∈(0,$\frac{π}{3}$),满足$\sqrt{3}$sinα+cosα=$\frac{\sqrt{6}}{2}$.
(1)求cos(α+$\frac{π}{6}$)的值;
(2)求cos(2α+$\frac{7}{12}$π)的值.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知向量$\overrightarrow{a}$=(-3,1),$\overrightarrow{b}$=(1,-2),$\overrightarrow{m}$=$\overrightarrow{a}$+k$\overrightarrow{b}$(k∈R).
(1)若$\overrightarrow{m}$与向量2$\overrightarrow{a}$-$\overrightarrow{b}$垂直,求实数k的值;
(2)若向量$\overrightarrow{c}$=(1,-1),且$\overrightarrow{m}$与向量k$\overrightarrow{b}$+$\overrightarrow{c}$平行,求实数k的值.

查看答案和解析>>

科目: 来源: 题型:填空题

8.若函数f(x)=|sin(ωx+$\frac{π}{3}$)|(ω>1)在区间[π,$\frac{5}{4}$π]上单调递减,则实数ω的取值范围是[$\frac{7}{6}$,$\frac{4}{3}$].

查看答案和解析>>

科目: 来源: 题型:填空题

7.已知f(x)是定义在(-∞,+∞)上的奇函数,当x>0时,f(x)=4x-x2,若函数f(x)在区间[t,4]上的值域为[-4,4],则实数t的取值范围是[-2-2$\sqrt{2}$,-2].

查看答案和解析>>

科目: 来源: 题型:填空题

6.若$\frac{sinαcosα}{1-cos2α}$=1,tan(α-β)=$\frac{1}{3}$,则tanβ=$\frac{1}{7}$.

查看答案和解析>>

科目: 来源: 题型:填空题

5.若函数f(x)=x2-ax+2a-4的一个零点在区间(-2,0)内,另一个零点在区间(1,3)内,则实数a的取值范围是(0,2).

查看答案和解析>>

科目: 来源: 题型:填空题

4.将函数y=sin(2x-$\frac{π}{3}$)的图象先向左平移$\frac{π}{3}$个单位,再将图象上各点的横坐标变为原来的$\frac{1}{2}$倍(纵坐标不变),那么所得图象的解析式为y=sin(4x+$\frac{π}{3}$).

查看答案和解析>>

同步练习册答案